规范与共识
ENGLISH ABSTRACT
慢性阻塞性肺疾病胸部CT检查及评价中国专家共识
中华医学会放射学分会心胸学组
作者及单位信息
·
DOI: 10.3760/cma.j.cn112149-20220929-00785
Chinese expert consensus on chest CT scanning and evaluation of chronic obstruction pulmonary disease
Cardio-thoracic Group of Chinese Society of Radiology Chinese Medical Association
Zheng Minwen
Guo Youmin
Liu Shiyuan
Authors Info & Affiliations
Cardio-thoracic Group of Chinese Society of Radiology Chinese Medical Association
Zheng Minwen
Department of Radiology, Xijing Hospital, Air Force Military Medical University, Xi′an 710032, China
Guo Youmin
Department of Radiology, First Affiliated Hospital of Xi′an Jiaotong University, Xi′an 710061, China
Liu Shiyuan
Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
·
DOI: 10.3760/cma.j.cn112149-20220929-00785
4773
1745
0
2
68
25
PDF下载
APP内阅读
摘要

慢性阻塞性肺疾病(COPD)是全球关注的重大公共卫生问题,近年来胸部CT评价COPD的研究发展迅速,但缺乏一致性认识。为此,中华医学会放射学分会牵头组织心胸学组专家,参考国际COPD的诊疗现状,结合我国胸部CT临床实践,经反复讨论形成以下共识,包括COPD临床诊断,胸部CT检查前准备及扫描方案,胸部CT定性、定量、功能评价,COPD急性加重及合并症的胸部CT评价以及胸部CT结构化报告。

肺疾病,慢性阻塞性;体层摄影术,X线计算机;专家共识
引用本文

中华医学会放射学分会心胸学组. 慢性阻塞性肺疾病胸部CT检查及评价中国专家共识[J]. 中华放射学杂志,2023,57(06):600-607.

DOI:10.3760/cma.j.cn112149-20220929-00785

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
本文评分
5 [累计1个]
慢性阻塞性肺疾病(chronic obstruction pulmonary disease,COPD)是全球关注的重大公共卫生问题,2019年世界卫生组织统计COPD是全球第3大致死疾病。2018年中国国家慢病和非传染性疾病预防控制中心报道,我国COPD患者高达1亿人,每分钟有1.9人死于COPD,2004至2015年发病率增幅为65.9%,40岁以上人群发病率为13.6% 1 , 2。与COPD严峻的诊疗现状相对应的却是我国民众对该病的低知晓率(仅0.9%),这直接导致了早诊早治的延误,疾病确诊时往往已是进展期,此时治疗效果明显下降。同时,不佳的疗效和迁延不愈的病程,会大大增加患者的医疗费用,造成了严重的医疗资源浪费和社会经济负担 1
肺功能检测(pulmonary function test,PFT)是目前临床诊断COPD的金标准,但早期诊断的灵敏度不高,通常肺结构破坏30%以上,才会出现指标的异常,且不能反映COPD的异质性 3。此外PFT的单一阈值诊断标准[使用支气管扩张剂后,第1秒用力呼气容积占用力肺活量的百分比(the ratio of forced expiratory volume in 1 second to forced vital capacity,FEV 1/FVC)<0.70]在老年人中会造成过度诊断,在青年人群中会导致漏诊 4。2022年慢性阻塞性肺疾病全球倡议(global initiative for chronic obstructive lung disease,GOLD)指南指出应该重视20~50岁人群COPD的患病情况。目前由于对青年人群COPD的认知度低,青年COPD常被漏诊,故应加强在青年人群中筛查COPD及COPD前期。COPD前期是指任何年龄段出现呼吸系统症状,伴或不伴肺结构损伤和(或)肺功能异常,不存在气流受限,但胸部CT可能会出现肺气肿表现。因此,国际及国内专家团队呼吁需要重视COPD的结构定量和功能影像综合评价COPD前期患者,建立更敏感的诊断方法及定量指标 5 , 6 , 7。COPD是一种非均质性的病变,随着病情的进展,可以发生肺小血管和肺小气道的重塑,进而形成肺气肿。胸部CT不仅可通过COPD患者肺气肿程度、大小气道形态、结构改变评价肺功能受损情况,亦可通过量化肺实质、气道和肺血管改变来评价其严重程度并预测急性加重风险。使用双气相CT(吸气末和呼气末CT)检测空气潴留,实现COPD的早期诊断及诊疗个性化评价,指导治疗和管理。但目前临床实践在此方面不够重视,胸部CT定量分析主要以评价肺结节为主,对肺气肿的分析以主观定性评价为主,对扫描方法和CT定量分析还缺乏一致性的认识。因此,中华医学会放射学分会牵头组织心胸学组专家,参考国际COPD的诊疗现状及国内胸部CT临床实践,讨论编写《慢性阻塞性肺疾病胸部CT检查及评价中国专家共识》,旨在指导各级医疗机构规范COPD的胸部CT扫描方案及基于CT的定性及定量评价,提高COPD的早期诊断及疗效评价。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Fang L , Gao P , Bao H ,et al. Chronic obstructive pulmonary disease in China: a nationwide prevalence study[J]. Lancet Respir Med, 2018,6(6):421-430. DOI: 10.1016/S2213-2600(18)30103-6 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Wang C , Xu J , Yang L ,et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study[J]. Lancet, 2018,391(10131):1706-1717. DOI: 10.1016/S0140-6736(18)30841-9 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Agusti A , Calverley PM , Celli B ,et al. Characterisation of COPD heterogeneity in the ECLIPSE cohort[J]. Respir Res, 2010,11(1):122. DOI: 10.1186/1465-9921-11-122 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Miller MR , Levy ML . Chronic obstructive pulmonary disease: missed diagnosis versus misdiagnosis[J]. BMJ, 2015,351:h3021. DOI: 10.1136/bmj.h3021 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Tanday S . Rethinking COPD diagnosis: imaging and GOLD criteria[J]. Lancet Respir Med, 2015,3(8):605. DOI: 10.1016/S2213-2600(15)00293-3 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Keener A . Redefining the diagnostic criteria for COPD[J]. Nature, 2020,581(7807):S4-S4. DOI: 10.1038/d41586-020-01373-x .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Fan L , Xia Y , Guan Y ,et al. Capability of differentiating smokers with normal pulmonary function from COPD patients: a comparison of CT pulmonary volume analysis and MR perfusion imaging[J]. Eur Radiol, 2013,23(5):1234-1241. DOI: 10.1007/s00330-012-2729-2 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Vogelmeier CF , Criner GJ , Martinez FJ ,et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD Executive Summary[J]. Am J Respir Crit Care Med, 2017,195(5):557-582. DOI: 10.1164/rccm.201701-0218PP .
返回引文位置Google Scholar
百度学术
万方数据
[9]
中华医学会放射学分会对比剂安全使用工作组. 碘对比剂使用指南(第2版)[J]. 中华放射学杂志, 2013,47(10):869-872. DOI: 10.3760/cma.j.issn.1005-1201.2013.10.001 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
中华医学会放射学分会心胸学组. 低剂量螺旋CT肺癌筛查专家共识[J]. 中华放射学杂志, 2015,49(5):328-335. DOI: 10.3760/cma.j.issn.1005-1201.2015.05.003 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
张丽,于红,刘士远,. 迭代重建技术对低剂量肺部平扫CT图像质量的影响[J]. 中华放射学杂志, 2013,47(4):316-320. DOI: 10.3760/cma.j.issn.1005-1201.2013.04.006 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Cao X , Jin C , Tan T ,et al. Optimal threshold in low-dose CT quantification of emphysema[J]. Eur J Radiol, 2020,129:109094. DOI: 10.1016/j.ejrad.2020.109094 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Lynch DA , Austin JH , Hogg JC ,et al. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society[J]. Radiology, 2015,277(1):192-205. DOI: 10.1148/radiol.2015141579 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Schiska A . The role of computed tomography in the diagnosis and treatment of emphysema[J]. Radiol Technol, 2016,87(3):340-343.
返回引文位置Google Scholar
百度学术
万方数据
[15]
Fan L , Xia Y , Guan Y ,et al. Characteristic features of pulmonary function test, CT volume analysis and MR perfusion imaging in COPD patients with different HRCT phenotypes[J]. Clin Respir J, 2014,8(1):45-54. DOI: 10.1111/crj.12033 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Hasenstab KA , Yuan N , Retson T ,et al. Automated CT staging of chronic obstructive pulmonary disease severity for predicting disease progression and mortality with a deep learning convolutional neural network[J]. Radiol Cardiothorac Imaging, 2021,3(2):e200477. DOI: 10.1148/ryct.2021200477 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Humphries SM , Notary AM , Centeno JP ,et al. Deep learning enables automatic classification of emphysema pattern at CT[J]. Radiology, 2020,294(2):434-444. DOI: 10.1148/radiol.2019191022 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Lor KL , Liu CP , Chang YC ,et al. Predictive modelling of lung function using emphysematous density distribution[J]. Sci Rep, 2019,9(1):19763. DOI: 10.1038/s41598-019-56351-9 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Ying J , Dutta J , Guo N ,et al. Classification of exacerbation frequency in the COPDGene cohort using deep learning with deep belief networks[J]. IEEE J Biomed Health Inform, 2020,24(6):1805-1813. DOI: 10.1109/JBHI.2016.2642944 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Cho YH , Seo JB , Lee SM ,et al. Radiomics approach for survival prediction in chronic obstructive pulmonary disease[J]. Eur Radiol, 2021,31(10):7316-7324. DOI: 10.1007/s00330-021-07747-7 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Yun J , Cho YH , Lee SM ,et al. Deep radiomics-based survival prediction in patients with chronic obstructive pulmonary disease[J]. Sci Rep, 2021,11(1):15144. DOI: 10.1038/s41598-021-94535-4 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Suzuki Y , Kitaguchi Y , Ueno F ,et al. Associations between morphological phenotypes of COPD and clinical characteristics in surgically resected patients with COPD and concomitant lung cancer[J]. Int J Chron Obstruct Pulmon Dis, 2022,17:1443-1452. DOI: 10.2147/COPD.S366265 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Nikolaou V , Massaro S , Garn W ,et al. The cardiovascular phenotype of chronic obstructive pulmonary disease (COPD): applying machine learning to the prediction of cardiovascular comorbidities[J]. Respir Med, 2021,186:106528. DOI: 10.1016/j.rmed.2021.106528 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Shimizu K , Tanabe N , Tho NV ,et al. Per cent low attenuation volume and fractal dimension of low attenuation clusters on CT predict different long-term outcomes in COPD[J]. Thorax, 2020,75(2):116-122. DOI: 10.1136/thoraxjnl-2019-213525 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Makino Y , Shimada Y , Hagiwara M ,et al. Assessment of emphysema severity as measured on three-dimensional computed tomography images for predicting respiratory complications after lung surgery[J]. Eur J Cardiothorac Surg, 2018,54(4):671-676. DOI: 10.1093/ejcts/ezy112 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Li Z , Xia Y , Fang Y ,et al. The importance of CT quantitative evaluation of emphysema in lung cancer screening cohort with negative findings by visual evaluation[J]. Clin Respir J, 2019,13(12):741-750. DOI: 10.1111/crj.13084 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
金晨望,梁志冉,段海峰,. 基于体素的空气潴留定量测量方法的建立及初步临床应用[J]. 中华放射学杂志, 2019,53(1):21-25. DOI: 10.3760/cma.j.issn.1005-1201.2019.01.006 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
周秀秀,蒲瑜,张迪,. 基于参数响应图参数的随机森林模型预测胸部疾病患者的肺功能[J]. 中华放射学杂志, 2022,56(9):1001-1008. DOI: 10.3760/cma.j.cn112149-20210907-00829 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
黄晓旗,牛媛,雷禹,. 基于CT双气相定量研究吸烟合并慢性阻塞性肺疾病患者的肺叶小气道病变及肺气肿损伤程度[J]. 中华放射学杂志, 2022,56(5):536-541. DOI: 10.3760/cma.j.cn112149-20210428-00418 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Koo HK , Vasilescu DM , Booth S ,et al. Small airways disease in mild and moderate chronic obstructive pulmonary disease: a cross-sectional study[J]. Lancet Respir Med, 2018,6(8):591-602. DOI: 10.1016/S2213-2600(18)30196-6 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Cao X , Gao X , Yu N ,et al. Potential value of expiratory CT in quantitative assessment of pulmonary vessels in COPD[J]. Front Med (Lausanne), 2021,8:761804. DOI: 10.3389/fmed.2021.761804 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Xia Y , Guan Y , Fan L ,et al. Dynamic contrast enhanced magnetic resonance perfusion imaging in high-risk smokers and smoking-related COPD: correlations with pulmonary function tests and quantitative computed tomography[J]. COPD, 2014,11(5):510-520. DOI: 10.3109/15412555.2014.948990 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Guan Y , Xia Y , Fan L ,et al. Quantitative assessment of pulmonary perfusion using dynamic contrast-enhanced CT in patients with chronic obstructive pulmonary disease: correlations with pulmonary function test and CT volumetric parameters[J]. Acta Radiol, 2015,56(5):573-580. DOI: 10.1177/0284185114535208 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Kim M , Doganay O , Hwang HJ ,et al. Lobar ventilation in patients with COPD assessed with the full-scale airway network flow model and xenon-enhanced dual-energy CT[J]. Radiology, 2021,298(1):201-209. DOI: 10.1148/radiol.2020202485 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
中华医学会放射学分会,中国医师协会放射医师分会,安徽省影像临床医学研究中心. 能量CT临床应用中国专家共识[J]. 中华放射学杂志, 2022,56(5):12. DOI: 10.3760/cma.j.cn112149-20220118-00051 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
刘文燕,武志峰. CT评估慢性阻塞性肺疾病患者胸部骨骼肌功能障碍的研究进展[J]. 中华放射学杂志, 2022,56(3):321-324. DOI: 10.3760/cma.j.cn112149-20210421-00394 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Mouronte-Roibás C , Leiro-Fernández V , Fernández-Villar A ,et al. COPD, emphysema and the onset of lung cancer. A systematic review[J]. Cancer Lett, 2016,382(2):240-244. DOI: 10.1016/j.canlet.2016.09.002 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Stolz D , Mkorombindo T , Schumann DM ,et al. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission[J]. Lancet, 2022,400(10356):921-972. DOI: 10.1016/S0140-6736(22)01273-9 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
郑敏文,空军军医大学西京医院放射诊断科,西安 710032,Email: mocdef.3ab617002wmgnehz
B
郭佑民,西安交通大学第一附属医院医学影像科,西安 710061,Email: mocdef.3ab61.pivnimuoyoug.rjc
C
刘士远,海军军医大学第二附属医院放射诊断科,上海 200003,Email: mocdef.3ab61.pivnauyihsuil.rjc
D
中华医学会放射学分会心胸学组. 慢性阻塞性肺疾病胸部CT检查及评价中国专家共识[J]. 中华放射学杂志, 2023, 57(6): 600-607. DOI: 10.3760/cma.j.cn112149-20220929-00785.
E
所有作者声明无利益冲突
F
国家自然科学基金 (81930049,82171926,81871321)
科技部重点研发计划 (2022YFC2010000,2022YFC2010002)
国家卫健委数据库建设项目 (YXFSC2022JJSJ002)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号