临床研究
ENGLISH ABSTRACT
不同人工晶状体屈光度计算公式在浅前房白内障患者中的准确性meta分析
李小禹
杨丽
海玥
谭青青
兰长骏
廖萱
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20200701-00472
Accuracy of different intraocular lens power calculation formulas in cataract patients with shallow anterior chamber: a meta-analysis
Li Xiaoyu
Yang Li
Hai Yue
Tan Qingqing
Lan Changjun
Liao Xuan
Authors Info & Affiliations
Li Xiaoyu
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, China
Yang Li
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, China
Hai Yue
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, China
Tan Qingqing
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, China
Lan Changjun
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, China
Liao Xuan
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Medical School of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, China
·
DOI: 10.3760/cma.j.cn115989-20200701-00472
513
96
0
0
4
1
PDF下载
APP内阅读
摘要

目的系统比较不同人工晶状体(IOL)屈光度计算公式在浅前房白内障患者中的准确性。

方法计算机检索外文数据库MEDLINE、EMBASE、Cochrane Library以及中文数据库中国知网、万方数据、维普数据库自建库起至2020年8月发表的关于IOL屈光度计算公式在浅前房白内障患者中的准确性同行评议文献,根据纳入标准和排除标准进行文献筛选、资料提取和质量评价,选择不同公式间平均绝对误差(MAE)的平均差( MD)作为观察指标,采用RevMan 5.3软件进行meta分析。

结果本研究共纳入7篇文献,总计499眼。对6种IOL屈光度计算公式(Barrett Universal Ⅱ、Haigis、SRK/T、Hoffer Q、Holladay 1和Holladay 2)进行比较结果显示,Barrett Universal Ⅱ公式的MAE低于Hoffer Q公式( MD:0.11 D;95% CI:0.05~0.17 D; P<0.001)、Haigis公式( MD:0.08 D;95% CI:0.03~0.13 D; P=0.002)和Holladay 2公式( MD:-0.06 D;95% CI:-0.11~-0.01 D; P=0.020),差异均有统计学意义。其余公式之间的配对比较,差异均无统计学意义(均 P>0.05)。

结论Barrett Universal Ⅱ公式在预测浅前房白内障患者IOL屈光度方面优于Hoffer Q公式、Haigis公式和Holladay 2公式。

白内障;人工晶状体;屈光误差;前房;meta分析
ABSTRACT

ObjectiveTo systematically compare the accuracy of intraocular lens (IOL) power calculation formulas in cataract patients with shallow anterior chamber.

MethodsA comprehensive literature search was conducted in MEDLINE, EMBASE, Cochrane Library, and the Chinese databases including CNKI, Wanfang, and VIP databases.The peer-reviewed literature on the accuracy of IOL power calculation formulas in cataract patients with shallow anterior chamber was searched from the establishment of the database until August 2020.Literature screening, data extraction and quality assessment were performed according to inclusion and exclusion criteria.The mean difference ( MD) of mean absolute error (MAE) among different formulas was analyzed.Meta-analysis was performed using Revman 5.3 software.

ResultsSeven studies involving 499 eyes were included.The accuracy of six formulas, Barrett Universal Ⅱ, Haigis, SRK/T, Hoffer Q, Holladay 1 and Holladay 2, was evaluated.The MAE of Barrett Universal Ⅱ was significantly lower than that of Hoffer Q ( MD=0.11 D; 95% CI: 0.05-0.17 D; P<0.001), Haigis ( MD=0.08 D; 95% CI: 0.03-0.13 D; P=0.002), and Holladay 2 ( MD=-0.06 D; 95% CI: -0.11--0.01 D; P=0.020). No significant difference was found in the remaining pairwise comparisons (all at P>0.05).

ConclusionsThe Barrett Universal Ⅱ formula is more accurate than Hoffer Q, Haigis, and Holladay 2 formulas in predicting IOL power in cataract patients with shallow anterior chamber.

Cataract;Lenses, intraocular;Refractive errors;Anterior chamber;Meta-analysis
Liao Xuan, Email: mocdef.3ab61dnaxeela
引用本文

李小禹,杨丽,海玥,等. 不同人工晶状体屈光度计算公式在浅前房白内障患者中的准确性meta分析[J]. 中华实验眼科杂志,2023,41(06):576-581.

DOI:10.3760/cma.j.cn115989-20200701-00472

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
眼球生物参数的准确测量和人工晶状体(intraocular lens,IOL)屈光度的精确计算是白内障术后获得良好视觉功能和视觉质量的关键 [ 1 ]。近年来,光学相干生物测量逐渐取代了传统的超声生物测量,测量精度已得到大幅提升 [ 2 , 3 ],IOL计算公式的准确性和公式选择的合理性成为影响IOL屈光度预测结果的主要原因。自20世纪70年代以来,各种IOL屈光度计算公式不断出现并用于临床实践,修正后的IOL计算公式准确性得以提高。引入有效晶状体位置(effective lens position,ELP)概念后,相继产生了以SRK/T、Holladay 1和Hoffer Q为代表的第3代理论计算公式,Haigis和Holladay 2为代表的第4代公式,以及目前临床开始使用的Barrett Universal Ⅱ公式,更有效地减小了白内障术后的屈光误差 [ 4 , 5 , 6 , 7 , 8 ]。ELP主要受前房深度(anterior chamber depth,ACD)的影响,因此ACD在决定IOL计算公式的预测性中起着重要作用。既往研究发现,ACD、眼轴长度(axial length,AL)、角膜曲率(keratometry readings,K)分别可以解释42%、36%和22%的屈光误差 [ 9 ]。在正常ACD下,各种IOL计算公式的准确性均较好;但随着ACD的减小,IOL计算公式屈光误差明显增加 [ 10 ]。迄今已有多项研究比较了ACD对IOL屈光度计算公式的影响,然而结果仍存在争议 [ 11 , 12 , 13 , 14 , 15 , 16 , 17 ]。本研究采用meta分析方法,系统评价IOL计算公式预测浅前房白内障患者术后屈光度的准确性,以期为临床选择提供循证医学证据。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Olson RJ . Cataract surgery from 1918 to the present and future-just imagine![J]Am J Ophthalmol 20181851013. DOI: 10.1016/j.ajo.2017.08.020 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Dong J Zhang Y Zhang H et al. Comparison of axial length,anterior chamber depth and intraocular lens power between IOLMaster and ultrasound in normal,long and short eyes[J/OL]PLoS One 201813(3)∶e0194273[2022-06-18]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854401/. DOI: 10.1371/journal.pone.0194273 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
刘波廖萱兰长骏扫频光相干断层扫描生物测量仪测量健康人眼球生物学参数的重复性和再现性[J]中华实验眼科杂志 201937(11)∶921925. DOI: 10.3760/cma.j.issn.2095-0160.2019.11.013 .
返回引文位置Google Scholar
百度学术
万方数据
Liu B Liao X Lan CJ et al. Repeatability and reproducibility of swept-source optical coherence tomography biometer for measuring the biological parameters of the eyeballs in healthy people[J]Chin J Exp Ophthalmol 201937(11)∶921925. DOI: 10.3760/cma.j.issn.2095-0160.2019.11.013 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[4]
Retzlaff JA Sanders DR Kraff MC . Development of the SRK/T intraocular lens implant power calculation formula[J]J Cataract Refract Surg 199016(3)∶333340. DOI: 10.1016/s0886-3350(13)80705-5 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Holladay JT Prager TC Chandler TY et al. A three-part system for refining intraocular lens power calculations[J]J Cataract Refract Surg 198814(1)∶1724. DOI: 10.1016/s0886-3350(88)80059-2 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Hoffer KJ . The Hoffer Q formula:a comparison of theoretic and regression formulas[J]J Cataract Refract Surg 199319(6)∶700712. DOI: 10.1016/s0886-3350(13)80338-0 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Haigis W Lege B Miller N et al. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis[J]Graefe's Arch Clin Exp Ophthalmol 2000238(9)∶765773. DOI: 10.1007/s004170000188 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Xia T Martinez CE Tsai LM . Update on intraocular lens formulas and calculations[J]Asia Pac J Ophthalmol (Phila) 20209(3)∶186193. DOI: 10.1097/APO.0000000000000293 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Olsen T Calculation of intraocular lens power:a review[J]Acta Ophthalmol Scand 200785(5)∶472485. DOI: 10.1111/j.1600-0420.2007.00879.x .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Ning X Yang Y Yan H et al. Anterior chamber depth-a predictor of refractive outcomes after age-related cataract surgery[J/OL]BMC Ophthalmol 201919(1)∶134[2022-06-18]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591866/. DOI: 10.1186/s12886-019-1144-8 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Eom Y Kang SY Song JS et al. Comparison of Hoffer Q and Haigis formulae for intraocular lens power calculation according to the anterior chamber depth in short eyes[J]Am J Ophthalmol 2014157(4)∶818824. DOI: 10.1016/j.ajo.2013.12.017 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Miraftab M Hashemi H Fotouhi A et al. Effect of anterior chamber depth on the choice of intraocular lens calculation formula in patients with normal axial length[J]Middle East Afr J Ophthalmol 201421(4)∶307311. DOI: 10.4103/0974-9233.142266 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Yang S Whang WJ Joo CK . Effect of anterior chamber depth on the choice of intraocular lens calculation formula[J/OL]PLoS One 201712(12)∶e0189868[2022-06-20]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5734766/. DOI: 10.1371/journal.pone.0189868 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Gökce SE Montes De Oca I Cooke DL et al. Accuracy of 8 intraocular lens calculation formulas in relation to anterior chamber depth in patients with normal axial lengths[J]J Cataract Refract Surg 201844(3)∶362368. DOI: 10.1016/j.jcrs.2018.01.015 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
邴丽英刘桂波马玉娜人工晶体计算公式在正常眼轴合并浅前房白内障患者中的准确性比较[J]临床医学进展 20188(2)∶210216. DOI: 10.12677/acm.2018.82036 .
返回引文位置Google Scholar
百度学术
万方数据
Bing LY Liu GB Ma YN et al. Accuracy of various intraocular lens calculation formulas in shallow anterior chamber patients with normal axial length[J]Adv Clin Med 20188(2)∶210216. DOI: 10.12677/acm.2018.82036 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[16]
Shrivastava AK Behera P Kacher R et al. Effect of anterior chamber depth on predictive accuracy of seven intraocular lens formulas in eyes with axial length less than 22 mm[J]Clin Ophthalmol 20191315791586. DOI: 10.2147/OPTH.S217932 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
李娟朱珂珂前房深度对正常眼轴白内障患者屈光度计算准确性的影响[J]广东医学 202041(2)∶212214. DOI: 10.13820/j.cnki.gdyx.20193335 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Whiting PF Rutjes AW Westwood ME et al. QUADAS-2:a revised tool for the quality assessment of diagnostic accuracy studies[J]Ann Intern Med 2011155(8)∶529536. DOI: 10.7326/0003-4819-155-8-201110180-00009 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Aristodemou P Knox Cartwright NE Sparrow JM et al. Formula choice:Hoffer Q,Holladay 1,or SRK/T and refractive outcomes in 8108 eyes after cataract surgery with biometry by partial coherence interferometry[J]J Cataract Refract Surg 201137(1)∶6371. DOI: 10.1016/j.jcrs.2010.07.032 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Sedaghat MR Azimi A Arasteh P et al. The relationship between anterior chamber depth,axial length and intraocular lens power among candidates for cataract surgery[J]Electron Physician 20168(10)∶31273131. DOI: 10.19082/3127 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Chang JS Lau SY . Correlation between axial length and anterior chamber depth in normal eyes,long eyes,and extremely long eyes[J]Asia Pac J Ophthalmol (Phila) 20121(4)∶213215. DOI: 10.1097/APO.0b013e31825f8cb6 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Hipólito-Fernandes D Luís ME Serras-Pereira R et al. Anterior chamber depth,lens thickness and intraocular lens calculation formula accuracy:nine formulas comparison[J]Br J Ophthalmol 2022106(3)∶349355. DOI: 10.1136/bjophthalmol-2020-317822 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Melles RB Holladay JT Chang WJ . Accuracy of intraocular lens calculation formulas[J]Ophthalmology 2018125(2)∶169178. DOI: 10.1016/j.ophtha.2017.08.027 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Wang JK Chang SW . Optical biometry intraocular lens power calculation using different formulas in patients with different axial lengths[J]Int J Ophthalmol 20136(2)∶150154. DOI: 10.3980/j.issn.2222-3959.2013.02.08 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Kane JX Van Heerden A Atik A et al. Intraocular lens power formula accuracy:comparison of 7 formulas[J]J Cataract Refract Surg 201642(10)∶14901500. DOI: 10.1016/j.jcrs.2016.07.021 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Cooke DL Cooke TL . Comparison of 9 intraocular lens power calculation formulas[J]J Cataract Refract Surg 201642(8)∶11571164. DOI: 10.1016/j.jcrs.2016.06.029 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Kim SY Lee SH Kim NR et al. Accuracy of intraocular lens power calculation formulas using a swept-source optical biometer[J/OL]PLoS One 202015(1)∶e0227638[2022-07-01]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959581/. DOI: 10.1371/journal.pone.0227638 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Reitblat O Assia EI Kleinmann G et al. Accuracy of predicted refraction with multifocal intraocular lenses using two biometry measurement devices and multiple intraocular lens power calculation formulas[J]Clin Exp Ophthalmol 201543(4)∶328334. DOI: 10.1111/ceo.12478 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Retzlaff J A new intraocular lens calculation formula[J]J Am Intraocul Implant Soc 19806(2)∶148152. DOI: 10.1016/s0146-2776(80)80008-5 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Srivannaboon S Chirapapaisan C Chirapapaisan N et al. Accuracy of Holladay 2 formula using IOLMaster parameters in the absence of lens thickness value[J]Graefe's Arch Clin Exp Ophthalmol 2013251(11)∶25632567. DOI: 10.1007/s00417-013-2439-8 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Mahdavi S Holladay J IOLMaster ® 500 and integration of the Holladay 2 formula for intraocular lens calculations [J]European Ophthalmic Rev 20115(2)∶134135. DOI: 10.17925/EOR.2011.05.02.134 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Charalampidou S Cassidy L Ng E et al. Effect on refractive outcomes after cataract surgery of intraocular lens constant personalization using the Haigis formula[J]J Cataract Refract Surg 201036(7)∶10811089. DOI: 10.1016/j.jcrs.2009.12.050 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
廖萱,Email: mocdef.3ab61dnaxeela
B

李小禹:研究设计和实施、数据采集和分析/解释、论文撰写;杨丽、海玥:实施研究、采集数据;谭青青、兰长骏:审阅和修改论文;廖萱:研究设计、数据分析、论文修改、对文章知识性内容作批评性审阅

C
所有作者均声明不存在利益冲突
D
四川省科技厅自然科学基金项目 (23NSFSC1940)
南充市市校科技战略合作项目 (22SXFWDF0003)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号