标准与规范
ENGLISH ABSTRACT
白内障术前眼球生物学参数测量和应用专家共识(2023)
《白内障术前眼球生物学参数测量和应用专家共识(2023)》专家组
中国医药教育协会眼科影像与智能医疗分会
国际转化医学协会眼科专业委员会
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20230602-00212
Consensus for measurement and application of ocular biometric parameters before cataract surgery (2023)
Expert Workgroup of Consensus for measurement and application of ocular biometric parameters before cataract surgery (2023)
Ophthalmic Imaging and Intelligent Medicine Branch of China Medical Education Association
Ophthalmology Committee of World Association of Translational Medicine
Shao Yi
Huang Yongzhi
Yang Weihua
Authors Info & Affiliations
Expert Workgroup of Consensus for measurement and application of ocular biometric parameters before cataract surgery (2023)
Ophthalmic Imaging and Intelligent Medicine Branch of China Medical Education Association
Ophthalmology Committee of World Association of Translational Medicine
Shao Yi
Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
Huang Yongzhi
Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
Yang Weihua
Shenzhen Eye Institute, Shenzhen Eye Hospital, Shenzhen 518040, China
·
DOI: 10.3760/cma.j.cn115989-20230602-00212
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

白内障是全球主要的可治疗性致盲眼病,目前手术摘除混浊晶状体并植入人工晶状体(IOL)是治疗白内障的主要方法,IOL屈光力的准确计算是提高术眼术后视觉质量的关键,其计算涉及术眼术前眼球生物学参数的准确测量。白内障术前应重点关注眼球生物学参数的测量和应用,主要包括精准的眼球生物学参数测量设备的选择和IOL屈光力计算公式的选择等。为了更好地满足术眼术后视觉质量和生活质量的需求,本专家共识依据国际上的重要文献和循证证据对白内障术前眼球生物学测量参数的选择和测量方法提出推荐意见,既包括传统的眼轴长度、角膜曲率、前房深度、晶状体厚度、角膜直径及中央角膜厚度等眼球结构参数,还纳入了Kappa角、Alpha角及波前像差等视光学参数。本共识同时还推荐了IOL屈光力计算公式需要的参数,旨在规范临床医生对白内障患者实施白内障手术术前眼球生物学测量参数的选择、测量和应用,从而提高白内障手术后的屈光效果和视觉质量。

白内障;手术;眼轴;角膜曲率;人工晶状体;屈光力;共识
ABSTRACT

Cataract is the leading cause of treatable blindness worldwide.Currently, surgical removal of the opaque lens and implantation of an intraocular lens (IOL) is the primary method for treating cataracts.Accurate calculation of IOL power is crucial for improving postoperative visual quality.IOL power calculation requires accurate measurement of preoperative ocular biometric parameters.Preoperative assessment and application of ocular biometric parameters, including the selection of accurate measurement devices and IOL power calculation formulas, should be emphasized in cataract cases.To better meet the needs of visual quality and quality of life of patients after surgery, this consensus provides recommendations based on important international literature and evidence-based research regarding the selection and measurement of ocular biometric parameters before cataract surgery.These recommendations include traditional ocular structural parameters such as axial length, corneal curvature, anterior chamber depth, lens thickness, corneal diameter, and central corneal thickness, as well as optical parameters including kappa angle, alpha angle, and wavefront aberrations.In addition, this consensus recommends the parameters required for IOL power calculation formulas.The goal of this consensus is to standardize the selection, measurement, and use of ocular biometric parameters in clinical practitioners before cataract surgery, thereby improving refractive outcomes and visual quality after cataract surgery.

Cataract;Surgery;Axial length;Corneal curvature;Intraocular lens;Refractive power;Consensus
Shao Yi, Email: mocdef.3ab6199eebeerf Shao Yi, Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
Huang Yongzhi, Email: mocdef.6ab21gnipuilys Huang Yongzhi, Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
Yang Weihua, Email: mocdef.9ab316060nebneb Yang Weihua, Shenzhen Eye Institute, Shenzhen Eye Hospital, Shenzhen 518040, China
引用本文

《白内障术前眼球生物学参数测量和应用专家共识(2023)》专家组,中国医药教育协会眼科影像与智能医疗分会,国际转化医学协会眼科专业委员会. 白内障术前眼球生物学参数测量和应用专家共识(2023)[J]. 中华实验眼科杂志,2023,41(08):713-723.

DOI:10.3760/cma.j.cn115989-20230602-00212

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
1 《白内障术前眼球生物学参数测量和应用专家共识(2023)》制定背景及方法
白内障仍然是全球主要的可治疗性致盲眼病,主要表现为视力下降,严重影响患者的生活质量,目前手术治疗是恢复白内障患者有用视力的首选方法。近年来,随着科学技术的快速进步、手术设备和手术方式的不断更新,以及患者对术后视觉质量要求的不断提高,白内障手术的目标已从复明逐渐转变为屈光预后和视觉质量的改善[ 1 , 2 ]。因此术前应对白内障患者进行全面评估,包括全身基础状况评估、详细的病史采集以及眼部评估等,其中白内障术前眼球生物学参数的准确测量以匹配人工晶状体(intraocular lens,IOL)屈光力计算公式的选择成为术后视觉质量达到预期的关键环节,规范的术前测量对手术及IOL的选择至关重要。对术前生物学参数的测量及评估会随着操作者经验和理解的不同而有所差异,这对患者白内障术中情况(如IOL选择等)及手术预后有着极大的影响。目前,国内外尚无明确的指南和共识来指导白内障术前眼球生物学参数的测量。
基于目前白内障术前眼球生物学参数测量标准不统一的问题,中国医药教育协会眼科影像与智能医疗分会组织眼科临床医学专家、眼科临床影像专家于2022年6月成立"白内障术前眼球生物学参数测量和应用专家共识(2023)"(简称"共识")撰写组,包括眼科影像与智能医学专家、白内障诊疗专家和眼科特检专家,于2022年6月6日对全国白内障术前眼球生物学参数测量的研究者进行调查,收集并整理相关领域中涉及的白内障术前眼球生物学参数测量问题及相关技术在临床应用中面临的困难。由于白内障术前眼球生物学参数测量尚未形成统一的可遵循指南,本专家组检索了Medline/PubMed数据库,在认真学习国内外白内障术前眼球生物学参数测量研究文献的基础上,召开线下和线上会议,针对收集的白内障术前眼球生物学参数测量问题进行充分讨论和论证。由执笔小组成员撰写《共识》初稿,初稿形成后通过电子邮件和微信方式由各位专家独立阅读并提出修改意见,分别提交《共识》撰写组核心成员,修改意见经过整理并通过微信、邮件和线上会议进行讨论和归纳。《共识》在修改期间得到多位专家的建议和指导,最终通过线下会议达成《共识》终稿,旨在规范和指导我国临床医生对白内障患者实施白内障手术术前眼球生物学测量参数的选择、测量和临床应用,从而提高白内障手术后的屈光效果和视觉质量。本共识制定过程历时1年余。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Sivardeen A , McAlinden C , Wolffsohn JS . Presbyopic correction use and its impact on quality of vision symptoms[J]J Optom 2020,13(1):29-34. DOI: 10.1016/j.optom.2018.12.004 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Goto S , Maeda N Corneal topography for intraocular lens selection in refractive cataract surgery[J/OL]Ophthalmology 2021,128(11):e142-e152[2023-05-20]https://pubmed.ncbi.nlm.nih.gov/33221325/. DOI: 10.1016/j.ophtha.2020.11.016 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Kane JX , Chang DF . Intraocular lens power formulas,biometry,and intraoperative aberrometry:a review[J/OL]Ophthalmology 2021,128(11):e94-e114[2023-05-20]https://pubmed.ncbi.nlm.nih.gov/32798526/. DOI: 10.1016/j.ophtha.2020.08.010 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Moshirfar M , Buckner B , Ronquillo YC et al. Biometry in cataract surgery:a review of the current literature[J]Curr Opin Ophthalmol 2019,30(1):9-12. DOI: 10.1097/ICU.0000000000000536 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Pereira A , Popovic M , Lloyd JC et al. Preoperative measurements for cataract surgery:a comparison of ultrasound and optical biometric devices[J]Int Ophthalmol 2021,41(4):1521-1530. DOI: 10.1007/s10792-021-01714-3 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Ribeiro F , Castanheira-Dinis A , Dias JM . Refractive error assessment:influence of different optical elements and current limits of biometric techniques[J]J Refract Surg 2013,29(3):206-212. DOI: 10.3928/1081597X-20130129-07 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Schelenz J , Kammann J Comparison of contact and immersion techniques for axial length measurement and implant power calculation[J]J Cataract Refract Surg 1989,15(4):425-428. DOI: 10.1016/s0886-3350(89)80062-8 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Olsen T Calculation of intraocular lens power:a review[J]Acta Ophthalmol Scand 2007,85(5):472-485. DOI: 10.1111/j.1600-0420.2007.00879.x .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Stopyra W The accuracy of IOL power calculation formulas for eyes of axial length exceeding 24.5 mm[J]Klin Oczna 2013,115(2):93-95.
返回引文位置Google Scholar
百度学术
万方数据
[10]
Zhang J , Liu Z , Qiu X et al. Axial length change in pseudophakic eyes measured by IOLMaster 700[J/OL]Transl Vis Sci Technol 2021,10(6):29[2023-05-20]https://pubmed.ncbi.nlm.nih.gov/34029364/. DOI: 10.1167/tvst.10.6.29 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Sorkin N , Zadok T , Barrett GD et al. Comparison of biometry measurements and intraocular lens power prediction between 2 SS-OCT-based biometers[J]J Cataract Refract Surg 2023,49(5):460-466. DOI: 10.1097/j.jcrs.0000000000001146 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Cheng SM , Li X , Zhang JS et al. Comparison of refractive prediction accuracy with three optical devices[J]J Refract Surg 2023,39(1):48-55. DOI: 10.3928/1081597X-20221115-02 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Huang J , Savini G , Wu F et al. Repeatability and reproducibility of ocular biometry using a new noncontact optical low-coherence interferometer[J]J Cataract Refract Surg 2015,41(10):2233-2241. DOI: 10.1016/j.jcrs.2015.10.062 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Chen S , Zhang Q , Savini G et al. Comparison of a new optical biometer that combines scheimpflug imaging with partial coherence interferometry with that of an optical biometer based on swept-source optical coherence tomography and placido-disk topography[J/OL]Front Med (Lausanne) 2021,8:814519[2023-05-20]https://pubmed.ncbi.nlm.nih.gov/35223885/. DOI: 10.3389/fmed.2021.814519 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Montés-Micó R Evaluation of 6 biometers based on different optical technologies[J]J Cataract Refract Surg 2022,48(1):16-25. DOI: 10.1097/j.jcrs.0000000000000690 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Haigis W , Lege B , Miller N et al. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis[J]Graefe's Arch Clin Exp Ophthalmol 2000,238(9):765-773. DOI: 10.1007/s004170000188 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Tu R , Yu J , Savini G et al. Agreement between two optical biometers based on large coherence length SS-OCT and Scheimpflug imaging/partial coherence interferometry[J]J Refract Surg 2020,36(7):459-465. DOI: 10.3928/1081597X-20200420-02 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Gatinel D , Debellemanière G , Saad A et al. Theoretical relationship between the anterior-posterior corneal curvature ratio,keratometric index,and estimated total corneal power[J]J Refract Surg 2023,39(4):266-272. DOI: 10.3928/1081597X-20230131-02 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Feldman RM , Kim G , Chuang AZ et al. Comparison between the CASIA SS-1000 and Pentacam in measuring corneal curvatures and corneal thickness maps[J/OL]BMC Ophthalmol 2023,23(1):10[2023-05-21]https://pubmed.ncbi.nlm.nih.gov/36604657/. DOI: 10.1186/s12886-023-02768-w .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Shammas HJ , Hoffer KJ . Repeatability and reproducibility of biometry and keratometry measurements using a noncontact optical low-coherence reflectometer and keratometer[J]Am J Ophthalmol 2012,153(1):55-61. DOI: 10.1016/j.ajo.2011.06.012 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Hiraoka T , Asano H , Ogami T et al. Influence of dry eye disease on the measurement repeatability of corneal curvature radius and axial length in patients with cataract[J/OL]J Clin Med 2022,11(3):710[2023-05-21]https://pubmed.ncbi.nlm.nih.gov/35160160/. DOI: 10.3390/jcm11030710 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Röggla V , Leydolt C , Schartmüller D et al. Influence of artificial tears on keratometric measurements in cataract patients[J]Am J Ophthalmol 2021,221:1-8. DOI: 10.1016/j.ajo.2020.08.024 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Keshav V , Henderson BA . Astigmatism management with intraocular lens surgery[J/OL]Ophthalmology 2021,128(11):e153-e163[2023-05-21]https://pubmed.ncbi.nlm.nih.gov/32798525/. DOI: 10.1016/j.ophtha.2020.08.011 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Abulafia A , Barrett GD , Porat-Rein A et al. Measured corneal astigmatism versus pseudophakic predicted refractive astigmatism in cataract surgery candidates[J]Am J Ophthalmol 2022,240:225-231. DOI: 10.1016/j.ajo.2022.02.029 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Hayashi K , Hirata A , Manabe S et al. Long-term change in corneal astigmatism after sutureless cataract surgery[J]Am J Ophthalmol 2011,151(5):858-865. DOI: 10.1016/j.ajo.2010.11.014 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Ueno Y , Hiraoka T , Miyazaki M et al. Corneal thickness profile and posterior corneal astigmatism in normal corneas[J]Ophthalmology 2015,122(6):1072-1078. DOI: 10.1016/j.ophtha.2015.01.021 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Wendelstein JA , Reifeltshammer SA , Cooke DL et al. The 10,000 Eyes Study:analysis of keratometry,abulafia-koch regression transformation,and biometric eye parameters obtained with swept-source optical coherence tomography[J]Am J Ophthalmol 2023,245:44-60. DOI: 10.1016/j.ajo.2022.08.024 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Kim EC , Cho K , Hwang HS et al. Intraocular lens prediction accuracy after corneal refractive surgery using K values from 3 devices[J]J Cataract Refract Surg 2013,39(11):1640-1646. DOI: 10.1016/j.jcrs.2013.04.045 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Corneal endothelial photography. Three-year revision.American Academy of Ophthalmology[J]Ophthalmology 1997,104 (8):1360-1365.
返回引文位置Google Scholar
百度学术
万方数据
[30]
Kumar R , Wahi D , Tripathi P Comparison of changes in endothelial cell count and central corneal thickness after phacoemulsification and small-incision cataract surgery:a prospective observational study at a tertiary care center of eastern Uttar Pradesh[J]Indian J Ophthalmol 2022,70(11):3954-3959. DOI: 10.4103/ijo.IJO_1906_22 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Sng CC , Foo LL , Cheng CY et al. Determinants of anterior chamber depth:the Singapore Chinese Eye Study[J]Ophthalmology 2012,119(6):1143-1150. DOI: 10.1016/j.ophtha.2012.01.011 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Kesim C , Yldz-Taş A , Karsloğlu MZ et al. The effect of anterior segment depth on the accuracy of 7 different intraocular lens calculation formulas[J]Turk J Ophthalmol 2022,52(4):228-236. DOI: 10.4274/tjo.galenos.2021.43726 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Melles RB , Holladay JT , Chang WJ . Accuracy of intraocular lens calculation formulas[J]Ophthalmology 2018,125(2):169-178. DOI: 10.1016/j.ophtha.2017.08.027 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Mo E , Lin L , Wang J et al. Clinical accuracy of 6 intraocular lens power calculation formulas in elongated eyes,according to anterior chamber depth[J]Am J Ophthalmol 2022,233:153-162. DOI: 10.1016/j.ajo.2021.07.017 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Melles RB , Kane JX , Olsen T et al. Update on intraocular lens calculation formulas[J]Ophthalmology 2019,126(9):1334-1335. DOI: 10.1016/j.ophtha.2019.04.011 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Hipólito-Fernandes D , Luís ME , Serras-Pereira R et al. Anterior chamber depth,lens thickness and intraocular lens calculation formula accuracy:nine formulas comparison[J]Br J Ophthalmol 2022,106(3):349-355. DOI: 10.1136/bjophthalmol-2020-317822 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Giménez-Calvo G , Bartol-Puyal FA , Altemir I et al. Influence of ocular biometric factors on the defocus curve in an enlarged depth-of-focus intraocular lens[J]Int Ophthalmol 2023,43(3):945-955. DOI: 10.1007/s10792-022-02496-y .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Grzybowski A , Kanclerz P Methods for achieving adequate pupil size in cataract surgery[J]Curr Opin Ophthalmol 2020,31(1):33-42. DOI: 10.1097/ICU.0000000000000634 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Lam S Comparison of age-derived lens thickness to optically measured lens thickness in IOL power calculation:a clinical study[J]J Refract Surg 2012,28(2):154-155. DOI: 10.3928/1081597X-20111209-01 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Theodoulidou S , Asproudis I , Kalogeropoulos C et al. Corneal diameter as a factor influencing corneal astigmatism after cataract surgery[J]Cornea 2016,35(1):132-136. DOI: 10.1097/ICO.0000000000000668 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Yao Y , Meng J , He W et al. Associations between anterior segment parameters and rotational stability of a plate-haptic toric intraocular lens[J]J Cataract Refract Surg 2021,47(11):1436-1440. DOI: 10.1097/j.jcrs.0000000000000653 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Bao T , Wang L , Liu C et al. Analysis of biometric parameters of cataract eyes measured with optical biometer Lenstar LS900,IOLMaster 700,and OPD-SCAN Ⅲ[J/OL]Photodiagnosis Photodyn Ther 2023,43:103646[2023-07-10]https://pubmed.ncbi.nlm.nih.gov/37271487/. DOI: 10.1016/j.pdpdt.2023.103646 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Bao T , Yin L , Liu C et al. Agreement of anterior segment measurements between LenStar LS 900 optical biometer and OPD Scan Ⅲ wavefront aberrometer devices in eyes with cataract[J/OL]Photodiagnosis Photodyn Ther 2023,41:103207[2023-07-10]https://pubmed.ncbi.nlm.nih.gov/36414150/. DOI: 10.1016/j.pdpdt.2022.103207 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Wang J , Long T , Wei W et al. Effect of central corneal thickness on corneal higher order aberrations after cataract surgery[J]J Refract Surg 2021,37(12):842-847. DOI: 10.3928/1081597X-20210816-01 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Nam SM , Im CY , Lee HK et al. Accuracy of RTVue optical coherence tomography,Pentacam,and ultrasonic pachymetry for the measurement of central corneal thickness[J]Ophthalmology 2010,117(11):2096-2103. DOI: 10.1016/j.ophtha.2010.03.002 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Fares U , Otri AM , Al-Aqaba MA et al. Correlation of central and peripheral corneal thickness in healthy corneas[J]Cont Lens Anterior Eye 2012,35(1):39-45. DOI: 10.1016/j.clae.2011.07.004 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Fu Y , Kou J , Chen D et al. Influence of angle kappa and angle alpha on visual quality after implantation of multifocal intraocular lenses[J]J Cataract Refract Surg 2019,45(9):1258-1264. DOI: 10.1016/j.jcrs.2019.04.003 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Qin M , Ji M , Zhou T et al. Influence of angle alpha on visual quality after implantation of extended depth of focus intraocular lenses[J/OL]BMC Ophthalmol 2022,22(1):82[2023-05-23]https://pubmed.ncbi.nlm.nih.gov/35177032/. DOI: 10.1186/s12886-022-02302-4 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Karhanová M , Pluháček F , Mlčák P et al. The importance of angle kappa evaluation for implantation of diffractive multifocal intra-ocular lenses using pseudophakic eye model[J/OL]Acta Ophthalmol 2015,93(2):e123-128[2023-05-23]https://pubmed.ncbi.nlm.nih.gov/25160117/. DOI: 10.1111/aos.12521 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Cervantes-Coste G , Tapia A , Corredor-Ortega C et al. The influence of angle alpha,angle kappa,and optical aberrations on visual outcomes after the implantation of a high-addition trifocal IOL[J/OL]J Clin Med 2022,11(3):896[2023-05-23]https://pubmed.ncbi.nlm.nih.gov/35160346/. DOI: 10.3390/jcm11030896 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Hemmati HD , Gologorsky D , Pineda R 2nd . Intraoperative wavefront aberrometry in cataract surgery[J]Semin Ophthalmol 2012,27(5-6):100-106. DOI: 10.3109/08820538.2012.708809 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Cook WH , McKelvie J , Wallace HB et al. Comparison of higher order wavefront aberrations with four aberrometers[J]Indian J Ophthalmol 2019,67(7):1030-1035. DOI: 10.4103/ijo.IJO_1464_18 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Koch DD , Hill W , Abulafia A et al. Pursuing perfection in intraocular lens calculations:I.logical approach for classifying IOL calculation formulas[J]J Cataract Refract Surg 2017,43(6):717-718. DOI: 10.1016/j.jcrs.2017.06.006 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Voytsekhivskyy OV , Hoffer KJ , Tutchenko L et al. Accuracy of 24 IOL power calculation methods[J]J Refract Surg 2023,39(4):249-256. DOI: 10.3928/1081597X-20230131-01 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Chung J , Bu JJ , Afshari NA . Advancements in intraocular lens power calculation formulas[J]Curr Opin Ophthalmol 2022,33(1):35-40. DOI: 10.1097/ICU.0000000000000822 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
李小禹杨丽海玥不同人工晶状体屈光度计算公式在浅前房白内障患者中的准确性meta分析[J]中华实验眼科杂志 2023,41(6):576-581. DOI: 10.3760/cma.j.cn115989-20200701-00472 .
返回引文位置Google Scholar
百度学术
万方数据
Li XY , Yang L , Hai Y et al. Accuracy of different intraocular lens power calculation formulas in cataract patients with shallow anterior chamber:a meta-analysis[J]Chin J Exp Ophthalmol 2023,41(6):576-581. DOI: 10.3760/cma.j.cn115989-20200701-00472 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[57]
徐雯许哲关注白内障手术技术新进展,提高白内障手术治疗精准性[J]中华实验眼科杂志 2022,40(5):389-394. DOI: 10.3760/cma.j.cn115989-20210715-00413 .
返回引文位置Google Scholar
百度学术
万方数据
Xu W , Xu Z Evolution of cataract surgical techniques and improvement of surgical precision[J]Chin J Exp Ophthalmol 2022,40(5):389-394. DOI: 10.3760/cma.j.cn115989-20210715-00413 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[58]
Kim JW , Eom Y , Yoon EG et al. Algorithmic intraocular lens power calculation formula selection by keratometry,anterior chamber depth and axial length[J/OL]Acta Ophthalmol 2022,100(3):e701-e709[2023-05-24]https://pubmed.ncbi.nlm.nih.gov/34378871/. DOI: 10.1111/aos.14956 .
返回引文位置Google Scholar
百度学术
万方数据
[59]
Stopyra W Comparison of the accuracy of six intraocular lens power calculation formulas for eyes of axial length exceeding 25.0mm[J]J Fr Ophtalmol 2021,44(9):1332-1339. DOI: 10.1016/j.jfo.2021.04.009 .
返回引文位置Google Scholar
百度学术
万方数据
[60]
Wang L , Koch DD . Modified axial length adjustment formulas in long eyes[J]J Cataract Refract Surg 2018,44(11):1396-1397. DOI: 10.1016/j.jcrs.2018.07.049 .
返回引文位置Google Scholar
百度学术
万方数据
[61]
Moshirfar M , Durnford KM , Jensen JL et al. Accuracy of six intraocular lens power calculations in eyes with axial lengths greater than 28.0 mm[J/OL]J Clin Med 2022,11(19):5947[2023-05-25]https://pubmed.ncbi.nlm.nih.gov/36233812/. DOI: 10.3390/jcm11195947 .
返回引文位置Google Scholar
百度学术
万方数据
[62]
Hill WE , Abulafia A , Wang L et al. Pursuing perfection in IOL calculations.Ⅱ.Measurement foibles:measurement errors,validation criteria,IOL constants,and lane length[J]J Cataract Refract Surg 2017,43(7):869-870. DOI: 10.1016/j.jcrs.2017.07.006 .
返回引文位置Google Scholar
百度学术
万方数据
[63]
Cooke DL , Cooke TL , Suheimat M et al. Standardizing sum-of-segments axial length using refractive index models[J]Biomed Opt Express 2020,11(10):5860-5870. DOI: 10.1364/BOE.400471 .
返回引文位置Google Scholar
百度学术
万方数据
[64]
张弛叶子李朝辉高度近视白内障患者人工晶状体计算公式的研究进展[J]中华实验眼科杂志 2022,40(5):466-469. DOI: 10.3760/cma.j.cn115989-20200512-00341 .
返回引文位置Google Scholar
百度学术
万方数据
Zhang C , Ye Z , Li ZH . Advances in intraocular lens power calculation formulas in high myopia[J]Chin J Exp Ophthalmol 2022,40(5):466-469. DOI: 10.3760/cma.j.cn115989-20200512-00341 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[65]
邓小慧常平骏黄锦海基于新型光学生物测量仪的人工晶状体屈光度数计算公式准确性比较[J]中华眼科杂志 2021,57(7):502-511. DOI: 10.3760/cma.j.cn112142-20200729-00511 .
返回引文位置Google Scholar
百度学术
万方数据
Deng XH , Chang PJ , Huang JH et al. Comparison of the accuracy of intraocular lens power calculation formulas based on the new swept-source optical coherence tomography biometry[J]Chin J Ophthalmol 2021,57(7):502-511. DOI: 10.3760/cma.j.cn112142-20200729-00511 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[66]
邓小慧常平骏黄锦海IOLMaster 700与IOLMaster 500不同计算公式对白内障眼人工晶状体屈光力计算的准确性比较[J]中华实验眼科杂志 2022,40(12):1170-1175. DOI: 10.3760/cma.j.cn115989-20200226-00110 .
返回引文位置Google Scholar
百度学术
万方数据
Deng XH , Chang PJ , Huang JH et al. A comparative study on calculation of intraocular lens power using different formulas between IOLMaster 700 and IOLMaster 500 in cataract eyes[J]Chin J Exp Ophthalmol 2022,40(12):1170-1175. DOI: 10.3760/cma.j.cn115989-20200226-00110 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
备注信息
A
邵毅,Email:mocdef.3ab6199eebeerf 邵毅,南昌大学第一附属医院眼科,南昌 330006
B
黄永志,Email:mocdef.6ab21gnipuilys 黄永志,四川大学华西医院眼科,成都 610041
C
杨卫华,Email:mocdef.9ab316060nebneb 杨卫华,深圳市眼科医院 深圳市眼病防治研究所,深圳 518040
D
http://www.guidelines-redistry.cn/,IPGRP-2023CN214
E
http://www.guidelines-redistry.cn/,IPGRP-2023CN214
F
所有作者均声明不存在利益冲突。本共识制定过程中的线下会议资金来源于国家自然科学基金和江西省部分科研项目的资金资助,未接受任何企业的赞助
G
本共识专家组声明坚持客观立场,以专业知识、研究数据和临床经验为依据,由中国医药教育协会眼科影像与智能医疗分会部分专家起草,经过全体专家背对背修订和充分讨论,最终形成本共识
H
本共识的内容仅代表参与制定的专家对本共识的指导意见,供白内障专科医师参考。尽管专家们进行了广泛的意见征询和讨论,但仍有不全面之处。本共识所提供的建议并非强制性意见,与本共识不一致的做法并不意味着错误或不当。临床实践中仍存在诸多问题需要探索,正在进行和未来开展的临床研究将提供进一步的证据。随着临床经验的积累和治疗手段的涌现,未来需要对本共识定期修订、更新,为患者带来更多临床获益
I
本共识发布后,将主要通过以下方式进行传播、实施和评价:(1)在《中华实验眼科杂志》发表本共识全文,包括本共识制订的具体方法、步骤以及共识工作组的成员和分工。(2)在全国性学术会议中宣讲,为从事白内障诊疗工作的眼科医师和技师解读本共识内容并进行相关培训;(3)在国内部分省(市)有计划组织针对本共识内容的推广会议,推动临床眼科医师、技师全面、准确地掌握和应用本共识;(4)通过线上多媒体形式推广本共识内容;(5)在未来2年定期开展相关研究,对国内白内障术前眼球生物学参数测量和应用现状进行评价,进一步了解本共识实施后的传播应用价值和对临床决策的作用
J
国家自然科学基金项目 (82160195)
江西省双千计划科技创新高端领军人才项目 (2022)
江西省重大(重点)研发专项计划项目 (20223BBH80014、20181BBG70004、20203BBG73059)
江西省杰出青年基金项目 (20192BCBL23020)
深圳市科技计划项目 (JCYJ20220530153604010)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号