视觉行为学检测是视觉疾病动物模型鉴定的主要方法之一,目前主要通过虚拟操作系统(VOS)产生视觉刺激诱发动物模型产生视动反应(OMR)或视动反射(OKR)来进行测量。自动化VOS能够调节光栅条纹宽度、旋转速度、光照强度等参数控制监测装置的对比敏感度和空间频率阈值,并追踪OKR、OMR及OKR联合OMR运动。通过对巩膜搜索线圈法、角膜标记法、OMR-arena系统、OMR指数、阶梯测试协议等测量方法及评估指标的不断完善与优化,图形二维刺激升级为三维刺激,并引入计算机图像识别技术提取小鼠身体及头部轮廓,利用深度学习等计算机算法,分析并处理疾病小鼠视觉行为学数据,提高灵敏度,缩短测量时间,减少检测误差,增加数据精准度,从而获得更可靠的视功能评估结果,为青光眼、白内障、视网膜病变、遗传性眼病、视神经退行性病变等疾病研究提供有力的研究工具。本文主要从视觉检测方法和视力评估指标2个方面对现有自动化VOS在小鼠视觉疾病模型行为评估中的价值进行综述。
Visual behaviorally operant method is one of the main detections for identifying animal models of visual diseases, which is mainly through the optomotor response (OMR) and optokinetic reflex (OKR) stimulated by the virtual operating system (VOS). The automated VOS was commonly used as a powerful tool to control the contrast sensitivity and measure the spatial frequency of the monitoring device by adjusting parameters such as grating fringe width, rotation velocity and light intensity, and also to track the OKR, OMR, and the combined movement of OKR and OMR.Both the optimized measuring methods and evaluation indicators including the search coils, the corneal labeling, OMR-arena system, the OMR index, the staircase protocol tests and the improved stimuli from two-dimensional to three-dimensional helped to ensure the validity of test data.Moreover, the introduction of image recognition technology benefited in extracting the body and head contours of mice.Computer algorithms such as deep learning were also applied to analyze and process the visual behavior of diseased mice, which promoted sensitivity, shortened testing time, reduced detection errors and improved data accuracy.For all the factors mentioned, the VOS could be used as an effective research tool for glaucoma, cataract, retinopathy, hereditary eye disease, optic nerve degeneration and others.This article reviewed the value of VOS for visual behavioral assessment in mice models of visual disease from the visual detection methods and assessment indicators.
焦洋,邵正波. 虚拟操作系统在小鼠视觉疾病动物模型行为评估中的价值[J]. 中华实验眼科杂志,2023,41(08):822-826.
DOI:10.3760/cma.j.cn115989-20210524-00315版权归中华医学会所有。
未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。