优先出版
ENGLISH ABSTRACT
基于长短时记忆神经网络的动态血糖预测研究
司家瑞
杨逸飞
迪力亚尔·阿不都克热木
李晶
作者及单位信息
·
DOI: 10.3760/cma.j.cn101909-20230720-00004
Long short-term memory neural network for dynamic blood glucose prediction
Si Jiarui
Yang Yifei
Diliyaer Abudukeremu
Li Jing
Authors Info & Affiliations
Si Jiarui
School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
Yang Yifei
School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
Diliyaer Abudukeremu
Second School of Clinical Medicine, Tianjin Medical University, Tianjin 300222, China
Li Jing
Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin 300070, China
·
DOI: 10.3760/cma.j.cn101909-20230720-00004
985
178
0
1
2
2
PDF下载
APP内阅读
摘要

目的研究比较长短时记忆(LSTM)神经网络的单维输入、多维输入模型以及反向传播(BP)神经网络在动态血糖领域的预测效果。

方法研究获取2021年6月至2022年1月天津医科大学朱宪彝纪念医院18例2型糖尿病患者血糖值及其中1例患者的运动步数、饮食摄入热量数据,建立以血糖为数据的单维输入模型和以血糖、步数、摄入热量为数据的多维输入模型两种基于深度学习中LSTM神经网络的预测模型,设置预测未来血糖的时间梯度分别为6、12、24 h,再计算预测值与实际值的均方根误差(RMSE)来评估模型间的差异,并同时基于BP神经网络建立单维预测模型,并与LSTM神经网络结果进行对比。

结果6、12、24 h预测时,基于LSTM神经网络的单维预测模型的RMSE分别为0.47、0.55、0.61;多维预测模型的RMSE分别为0.31、0.50、0.56;基于BP神经网络的单维预测模型的RMSE分别为0.38、0.59、0.63。基于LSTM神经网络建立的单维预测模型与多维预测模型都展现出了较高的精确度,且模型精确度随预测时间梯度增加而降低。对同一患者进行对比之后可确定,多维预测模型的精确度更高;除此之外,LSTM神经网络的结果精确度比BP神经网络结果精确度更高。

结论LSTM神经网络可作为动态血糖预测领域的有效手段。

2型糖尿病;长短时记忆神经网络;均方根误差;血糖预测;深度学习
ABSTRACT

ObjectiveThis study aims to compare the performance of the single-dimensional input model and the multi-dimensional input model of the long short-term memory (LSTM) neural network and the backpropagation neural network in predicting dynamic blood glucose levels.

MethodsBlood glucose values from 18 patients with type 2 diabetes from June 2021 to January 2022 in Tianjin Medical University Chu Hsien-I Memorial Hospital were collected, including one patient whose steps recorded during exercise and dietary calorie intake data were also obtained. Two prediction models based on LSTM neural network were developed: a one-dimensional model with blood glucose as input and a multi-dimensional model with blood glucose, steps, and intake calories as inputs. Time intervals of 6 hours, 12 hours, and 24 hours were set for predicting future blood glucose levels. The root mean square error (RMSE) between the predicted and actual values was calculated to assess the performance of the models. Additionally, the results of the single-dimensional prediction model based on the backpropagation neural network were compared with those of the LSTM neural network model.

ResultsThe RMSEs for the 6-hour, 12-hour, and 24-hour predictions were 0.47, 0.55 and 0.61, respectively, for the single-dimensional LSTM model. The RMSEs for the multi-dimensional LSTM model were 0.31, 0.50 and 0.56, respectively. The average RMSEs for the single-dimensional backpropagation model were 0.38, 0.59 and 0.63, respectively. Both the single-dimensional and multi-dimensional LSTM models demonstrated high accuracy, with accuracy decreasing as the prediction time gradient increased. Comparison of the results for one patient indicated that the multi-dimensional model was more accurate. Furthermore, the LSTM neural network exhibited higher accuracy compared to the backpropagation neural network.

ConclusionThe LSTM neural network proves to be an effective method for dynamic blood glucose prediction.

Type 2 diabetes;Long-short term memory neural network;Root mean square error;Glucose prediction;Deep learning
Li Jing, Email: mocdef.3ab61rotciv-3002
引用本文

司家瑞,杨逸飞,迪力亚尔·阿不都克热木,等. 基于长短时记忆神经网络的动态血糖预测研究[J]. 数字医学与健康,2023,01(01):22-27.

DOI:10.3760/cma.j.cn101909-20230720-00004

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
糖尿病是一种常见的慢性疾病,主要是由胰岛素分泌不足或是胰岛素利用障碍引起,典型的临床表现包括多饮、多食、多尿和体重减轻且糖耐量异常。糖尿病分为1型与2型,后者较为常见。2型糖尿病病因较为复杂,是由遗传因素、环境因素、年龄因素、种族因素、个人生活方式等多种因素导致的胰岛素分泌不足或产生胰岛素抵抗的现象。血糖指标对于糖尿病病情的控制具有重要意义。糖尿病患者体内存在胰岛素分泌或利用障碍,若长期处于高血糖状态,易引起碳水化合物、蛋白质、脂肪代谢紊乱 1,若不及时控制血糖,可引起心脏、肾脏、眼睛等多器官严重并发症 2,严重威胁患者身体健康。为了避免低血糖、高血糖及随之而来的并发症的风险,2型糖尿病患者需要执行严格的自我管理(如饮食、运动、睡眠等)来控制血糖水平。研究表明,糖尿病患者的血糖变化与其饮食、运动等方面息息相关。
近年来,深度学习相关技术在糖尿病血糖预测领域占据了越来越重要的地位。循环神经网络(recurrent neural network,RNN)是一类以序列数据为输入,在序列的演进方向进行递归且所有节点按链式连接的递归神经网络 3。长短时记忆(long short-term memory,LSTM)神经网络是一种特殊的RNN,其在处理这些呈现时间序列性质的医疗数据时效果较佳。但是目前国内外使用LSTM神经网络对糖尿病患者进行血糖预测的研究还停留在较为基础的阶段。彭秀丽等 4采用LSTM网络与门控循环单元(gate drecurrent unit,GRU)模型对1型糖尿病和2型糖尿病患者的低血糖预警进行比较,但预警的时间尺度过短。Martínez-Delgado等 5采用RNN模型并基于碳水化合物和胰岛素吸收曲线预测1型糖尿病患者即将到来的血糖水平,但未考虑到运动等因素且样本数据较少。Rabby等 6提出了一种考虑传感器故障的基于堆叠LSTM的深度递归神经网络模型预测血糖水平的新方法,并采用卡尔曼平滑技术加以修正,但预测值与真实值仍存在较大的差异。
本文通过深度学习中的LSTM神经网络,结合患者的多元生活数据,对未来6、12、24 h的血糖作出预测,在不良血糖事件发生前进行提前干预,更有效地帮助患者保持血糖水平,预防糖尿病的各种并发症的产生。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
孙景磊. 2型糖尿病患者糖化血红蛋白与空腹血糖、血脂检测的关系分析[J]. 中国现代药物应用, 2018,12(7):57-58. DOI: 10.14164/j.cnki.cn11-5581/r.2018.07.032 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
刘娟,潘登. 血糖、血脂和实验室相关指标检测在老年2型糖尿病患者病情监控中的应用价值[J]. 临床医学研究与实践, 2022,7(11):12-15. DOI: 10.19347/j.cnki.2096-1413.202211004 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Goodfellow I , Bengio Y , Courville A . Deep learning (Vol. 1)[M]. Cambridge:MIT Press, 2016:367-415.
[4]
彭秀丽,王延年,李全忠. LSTM-GRU模型对1型糖尿病和2型糖尿病患者低血糖的预警价值[J]. 河南医学研究, 2022,31(12):2135-2139. DOI: 10.3969/j.issn.1004-437X.2022.12.005 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Martínez-Delgado L , Munoz-Organero M , Queipo-Alvarez P . Using Absorption models for insulin and carbohydrates and deep leaning to improve glucose level predictions[J]. Sensors (Basel), 2021,21(16):5273. DOI: 10.3390/s21165273 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Rabby MF , Tu Y , Hossen MI ,et al. Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction[J]. BMC Med Inform Decis Mak, 2021,21(1):101. DOI: 10.1186/s12911-021-01462-5 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Faruqui S , Du Y , Meka R ,et al. Development of a Deep learning model for dynamic forecasting of blood glucose level for type 2 diabetes mellitus: secondary analysis of a randomized controlled trial [J]. JMIR Mhealth Uhealth, 2019,7(11):e14452. DOI: 10.2196/14452 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
朱倩,章萌,胡耀余,. 基于长短时记忆循环神经网络的北京市糖尿病合并呼吸系统疾病患者入院预测研究[J]. 浙江大学学报(医学版), 2022,51(1):1-9. DOI: 10.3724/zdxbyxb-2021-0227 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Liu YC , Liu W , Chen HR ,et al. Graph convolutional network enabled two-stream learning architecture for diabetes classification based on flash glucose monitoring data[J]. Biomedical Signal Processing and Control, 2021,69:102896.
返回引文位置Google Scholar
百度学术
万方数据
[10]
Kulcu E , Tamada JA , Reach G ,et al. Physiological differences between interstitial glucose and blood glucose measured in human subjects[J]. Diabetes Care, 2003,26(8):2405-2409. DOI: 10.2337/diacare.26.8.2405 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Bailey TS . Clinical implications of accuracy measurements of continuous glucose sensors[J]. Diabetes Technol Ther, 2017,19(S2):S51-S54. DOI: 10.1089/dia.2017.0050 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Haak Thomas , Hanaire Hélène , Ajjan Ramzi ,et al. Use of flash glucose-sensing technology for 12 months as a replacement for blood glucose monitoring in insulin-treated type 2 diabetes [J]. Diabetes Therapy, 2017,8(3):573-586. DOI: 10.1007/s13300-017-0255-6 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
李晶,Email: mocdef.3ab61rotciv-3002
B

司家瑞:设计试验、实施研究、采集数据、文章审阅、研究指导;杨逸飞:实施研究、采集数据、分析数据、文章起草、统计分析;迪力亚尔•阿不都克热木:采集数据、分析数据;李晶:文章审阅、支持性贡献

C
司家瑞, 杨逸飞, 迪力亚尔·阿不都克热木, 等. 基于长短时记忆神经网络的动态血糖预测研究[J]. 数字医学与健康, 2023, 1(1): 22-27. DOI: 10.3760/cma.j.cn101909-20230720-00004.
D
所有作者声明无利益冲突
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号