综述
ENGLISH ABSTRACT
CRISPR/Cas9基因编辑技术在遗传性视网膜疾病中的应用
孙玺皓
唐仕波 [综述]
陈建苏 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20201120-00787
Application of CRISPR/Cas9 genome editing technology in hereditary retinal diseases
Sun Xihao
Tang shibo
Chen Jiansu
Authors Info & Affiliations
Sun Xihao
Aier School of Ophthalmology, Central South University, Aier Eye Institute Changsha, Chiangsha 410015, China
Tang shibo
Aier School of Ophthalmology, Central South University, Aier Eye Institute Changsha, Chiangsha 410015, China
Chen Jiansu
Aier School of Ophthalmology, Central South University, Aier Eye Institute Changsha, Chiangsha 410015, China
·
DOI: 10.3760/cma.j.cn115989-20201120-00787
671
111
0
0
1
0
PDF下载
APP内阅读
摘要

目前,一些遗传性视网膜疾病的突变基因已经得到确认,但仍缺乏有效的治疗方法。成簇规律间隔短回文重复序列(CRISPR)和CRISPR相关蛋白(CAS)系统可以通过非同源末端连接及同源定向修复的方式编辑人类基因组DNA,其为遗传性视网膜疾病的治疗提供了更多的可能性。CRISPR/Cas9不仅可以纠正遗传性疾病患者来源特异性诱导多能干细胞(iPSCs)的突变基因,随后分化为视网膜相关的细胞,进而实施细胞治疗;其也可以通过载体传递至体内,直接作用于靶细胞实现体内基因编辑。CRISPR/Cas9基因编辑技术在遗传性视网膜疾病中的应用主要集中在视网膜色素变性、遗传性X连锁青少年视网膜劈裂症、Leber先天性黑矇10型等疾病中,其中体外应用CRISPR/Cas9治疗LCA10已经进入临床试验阶段。本文对CRISPR/Cas9基因编辑技术的作用机制、研究进展,以及其在遗传性视网膜疾病中的应用进展进行综述。

基因编辑;CRISPR/Cas9;遗传性视网膜疾病
ABSTRACT

Several mutant genes for inherited retinal diseases have been identified, but effective treatments are still lacking.The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system can edit human genomic DNA by nonhomologous end joining or homology-directed repair, offering more possibilities for the treatment of hereditary retinal diseases.CRISPR/Cas9 not only can genetically correct patient-derived induced pluripotent stem cells (iPSCs) to observe their differentiation into retinal cells thereby, thereby exploring the pathogenesis of the disease and implementing cell therapy, but can also be delivered to the body via vectors and directly act on target cells to achieve in vivo gene editing.CRISPR/Cas9 gene editing technology in hereditary retinal diseases has been mainly used in retinitis pigmentosa, hereditary X-linked juvenile retinoschisis, and Leber congenital amaurosis 10, of which the in vitro application of CRISPR/Cas9 for Leber congenital amaurosis 10 has entered the clinical trial stage.In this paper, we reviewed the mechanism and key advances of CRISPR/Cas9 and provided an overview of gene editing in IRDs.

Gene editing;CRISPR/Cas9;Inherited retinal diseases
Chen Jiansu, Email: mocdef.3ab610002usnaijnehc;
Tang shibo, Email: mocdef.3ab61.pivobihsgnat
引用本文

孙玺皓,唐仕波,陈建苏. CRISPR/Cas9基因编辑技术在遗传性视网膜疾病中的应用[J]. 中华实验眼科杂志,2023,41(09):925-930.

DOI:10.3760/cma.j.cn115989-20201120-00787

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
遗传性视网膜疾病(inherited retinal diseases,IRDs)是一类因基因组异常而导致光感受器细胞和视网膜色素上皮细胞结构及功能损害的疾病,常造成视力不可逆丧失[ 1 ]。目前一些IRDs的致病基因及具体突变位点已经明确,但仍缺乏有效的治疗方法。随着第3代基因编辑技术成簇规律间隔短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR)和CRISPR相关蛋白(CRISPR-associated protein system,Cas)的出现,基因治疗和细胞替代治疗的可行性增加,为IRDs患者治疗带来了曙光。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Tucker BA Mullins RF Stone EM . Stem cells for investigation and treatment of inherited retinaldisease[J]Hum Mol Genet 201423(R1)∶R9R16. DOI: 10.1093/hmg/ddu124 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Charpentier E Doudna JA . Biotechnology:rewriting a genome[J]Nature 2013495(7439)∶5051. DOI: 10.1038/495050a .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Barrangou R Fremaux C Deveau H et al. CRISPR provides acquired resistance against viruses inprokaryotes[J]. 2007315(5819)∶17091712.
返回引文位置Google Scholar
百度学术
万方数据
[4]
Makarova KS Aravind L Grishin NV et al. A DNA repair system specific for thermophilic archaea and bacteria predicted by genomic context analysis[J]Nucleic Acids Res 200230(2)∶482496. DOI: 10.1093/nar/30.2.482 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Jinek M Chylinski K Fonfara I et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]Science 2012337(6096)∶816821. DOI: 10.1126/science.1225829 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Gasiunas G Barrangou R Horvath P et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J/OL]Proc Natl Acad Sci U S A 2012109(39)∶E2579E2586[2022-11-25]http://www.ncbi.nlm.nih.gov/pubmed/22949671. DOI: 10.1073/pnas.1208507109 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Doetschman T Georgieva T Gene editing with CRISPR/Cas9 RNA-directed nuclease[J]Circ Res 2017120(5)∶876894. DOI: 10.1161/CIRCRESAHA.116.309727 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Mali P Yang L Esvelt KM et al. RNA-guided human genome engineering via Cas9[J]Science 2013339(6121)∶823826. DOI: 10.1126/science.1232033 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Fu Y Foden JA Khayter C et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]Nat Biotechnol 201331(9)∶822826. DOI: 10.1038/nbt.2623 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Haapaniemi E Botla S Persson J et al. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response[J]Nat Med 201824(7)∶927930. DOI: 10.1038/s41591-018-0049-z .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Zhou C Sun Y Yan R et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis[J]Nature 2019571(7764)∶275278. DOI: 10.1038/s41586-019-1314-0 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Moon SB Kim DY Ko JH et al. Improving CRISPR genome editing by engineering guide RNAs[J]Trends Biotechnol 201937(8)∶870881. DOI: 10.1016/j.tibtech.2019.01.009 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Ran FA Hsu PD Lin CY et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]Cell 2013154(6)∶13801389. DOI: 10.1016/j.cell.2013.08.021 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Oakes BL Fellmann C Rishi H et al. CRISPR-Cas9 circular permutants as programmable scaffolds for genome modification[J]Cell 2019176(1-2)∶254267. DOI: 10.1016/j.cell.2018.11.052 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Saleh-Gohari N Helleday T Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in humancells[J]Nucleic Acids Res 200432(12)∶36833688. DOI: 10.1093/nar/gkh703 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Kantor A McClements ME MacLaren RE . CRISPR-Cas9 DNA base-editing and Prime-Editing[J/OL]Int J Mol Sci 202021(17)∶6240[2023-08-12]http://www.ncbi.nlm.nih.gov/pubmed/32872311. DOI: 10.3390/ijms21176240 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Diorio C Murray R Naniong M et al. Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL[J]Blood 2022140(6)∶619629. DOI: 10.1182/blood.2022015825 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Zhao D Li J Li S et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]Nat Biotechnol 202139(1)∶3540. DOI: 10.1038/s41587-020-0592-2 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Anzalone AV Randolph PB Davis JR et al. Search-and-replace genome editing without double-strand breaks or donorDNA[J]Nature 2019576(7785)∶149157. DOI: 10.1038/s41586-019-1711-4 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Hsu PD Scott DA Weinstein JA et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]Nat Biotechnol 201331(9)∶827832. DOI: 10.1038/nbt.2647 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Walton RT Christie KA Whittaker MN et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]Science 2020368(6488)∶290296. DOI: 10.1126/science.aba8853 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Harrington LB Doxzen KW Ma E et al. A broad-spectrum inhibitor of CRISPR-Cas9[J]Cell 2017170(6)∶12241233. DOI: 10.1016/j.cell.2017.07.037 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Dong D Guo M Wang S et al. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein[J]Nature 2017546(7658)∶436439. DOI: 10.1038/nature22377 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Nihongaki Y Kawano F Nakajima T et al. Photoactivatable CRISPR-Cas9 for optogenetic genome editing[J]Nat Biotechnol 201533(7)∶755760. DOI: 10.1038/nbt.3245 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Saint-Geniez M Rosales M Eyeing the fountain of youth[J]Cell Stem Cell 201720(5)∶583584. DOI: 10.1016/j.stem.2017.04.007 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Eiraku M Takata N Ishibashi H et al. Self-organizing optic-cup morphogenesis in three-dimensional culture[J]Nature 2011472(7341)∶5156. DOI: 10.1038/nature09941 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Zhong X Gutierrez C Xue T et al. Generation of three-dimensional retinal tissue with functional photoreceptors from humani PSCs[J/OL]Nat Commun 201454047[2022-11-28]http://www.ncbi.nlm.nih.gov/pubmed/24915161. DOI: 10.1038/ncomms5047 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Gonzalez-Cordero A Kruczek K Naeem A et al. Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of conephotoreceptors[J]Stem Cell Reports 20179(3)∶820837. DOI: 10.1016/j.stemcr.2017.07.022 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
De Masi C Spitalieri P Murdocca M et al. Application of CRISPR/Cas9 to human-induced pluripotent stem cells:from gene editing to drug discovery[J/OL]Hum Genomics 202014(1)∶25[2022-11-28]http://www.ncbi.nlm.nih.gov/pubmed/32591003. DOI: 10.1186/s40246-020-00276-2 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Zhu D Xie M Gademann F et al. Protective effects of human iPS-derived retinal pigmented epithelial cells on retinal degenerative disease[J/OL]Stem Cell Res Ther 202011(1)∶98[2022-11-28]http://www.ncbi.nlm.nih.gov/pubmed/32131893. DOI: 10.1186/s13287-020-01608-8 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Mandai M Watanabe A Kurimoto Y et al. Autologous induced stem-cell-derived retinal cells for macular degeneration[J]N Engl J Med 2017376(11)∶10381046. DOI: 10.1056/NEJMoa1608368 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Nishida M Tanaka Y Tanaka Y et al. Human iPS cell derived RPE strips for secure delivery of graft cells at a target place with minimal surgical invasion[J/OL]Sci Rep 202111(1)∶21421[2022-11-28]http://www.ncbi.nlm.nih.gov/pubmed/34728664. DOI: 10.1038/s41598-021-00703-x .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Wiley LA Burnight ER Songstad AE et al. Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases[J]Prog Retin Eye Res 2015441535. DOI: 10.1016/j.preteyeres.2014.10.002 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Kamao H Mandai M Okamoto S et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application[J]Stem Cell Reports 20142(2)∶205218. DOI: 10.1016/j.stemcr.2013.12.007 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Wahlin KJ Maruotti JA Sripathi SR et al. Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells[J/OL]Sci Rep 20177(1)∶766[2022-11-28]http://www.ncbi.nlm.nih.gov/pubmed/28396597. DOI: 10.1038/s41598-017-00774-9 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Bharti K Rao M Hull SC et al. Developing cellular therapies for retinal degenerative diseases[J]Invest Ophthalmol Vis Sci 201455(2)∶11911202. DOI: 10.1167/iovs.13-13481 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Boye SE Alexander JJ Witherspoon CD et al. Highly efficient delivery of adeno-associated viral vectors to the primate retina[J]Hum Gene Ther 201627(8)∶580597. DOI: 10.1089/hum.2016.085 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Moore NA Morral N Ciulla TA et al. Gene therapy for inherited retinal and optic nerve degenerations[J]Expert Opin Biol Ther 201818(1)∶3749. DOI: 10.1080/14712598.2018.1389886 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Thomas CE Ehrhardt A Kay MA . Progress and problems with the use of viral vectors for genetherapy[J]Nat Rev Genet 20034(5)∶346358. DOI: 10.1038/nrg1066 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Lee M Kim H Therapeutic application of the CRISPR system:current issues and new prospects[J]Hum Genet 2019138(6)∶563590. DOI: 10.1007/s00439-019-02028-2 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Wang HX Li M Lee CM et al. CRISPR/Cas9-based genome editing for disease modeling and therapy:challenges and opportunities for nonviral delivery[J]Chem Rev 2017117(15)∶98749906. DOI: 10.1021/acs.chemrev.6b00799 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Huang S Deshmukh H Rajagopalan KK et al. Gold nanoparticles electroporation enhanced polyplex delivery to mammalian cells[J]Electrophoresis 201435(12-13)∶18371845. DOI: 10.1002/elps.201300617 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Hung SS Chrysostomou V Li F et al. AAV-mediated CRISPR/Cas gene editing of retinal cells in vivo[J]Invest Ophthalmol Vis Sci 201657(7)∶34703476. DOI: 10.1167/iovs.16-19316 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Wang D Mou H Li S et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses[J]Hum Gene Ther 201526(7)∶432442. DOI: 10.1089/hum.2015.087 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Li F Hung S Mohd Khalid M et al. Utility of self-destructing CRISPR/Cas constructs for targeted gene editing in theretina[J]Hum Gene Ther 201930(11)∶13491360. DOI: 10.1089/hum.2019.021 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Nishiguchi KM Fujita K Miya F et al. Single AAV-mediated mutation replacement genome editing in limited number of photoreceptors restores vision in mice[J/OL]Nat Commun 202011(1)∶482[2022-11-30]http://www.ncbi.nlm.nih.gov/pubmed/31980606. DOI: 10.1038/s41467-019-14181-3 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Suzuki K Tsunekawa Y Hernandez-Benitez R et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration[J]Nature 2016540(7631)∶144149. DOI: 10.1038/nature20565 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Xian B Huang B The immune response of stem cells in subretinal transplantation[J/OL]Stem Cell Res Ther 20156161[2022-11-30]http://www.ncbi.nlm.nih.gov/pubmed/26364954. DOI: 10.1186/s13287-015-0167-1 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Sengillo JD Justus S Tsai YT et al. Gene and cell-based therapies for inherited retinal disorders:an update[J]Am J Med Genet C Semin Med Genet 2016172(4)∶349366. DOI: 10.1002/ajmg.c.31534 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Campochiaro PA Mir TA . The mechanism of cone cell death in retinitis pigmentosa[J]Prog Retin Eye Res 2018622437. DOI: 10.1016/j.preteyeres.2017.08.004 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Buskin A Zhu L Chichagova V et al. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa[J/OL]Nat Commun 20189(1)∶4234[2022-11-30]http://www.ncbi.nlm.nih.gov/pubmed/30315276. DOI: 10.1038/s41467-018-06448-y .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Deng WL Gao ML Lei XL et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients[J]Stem Cell Reports 201810(4)∶12671281. DOI: 10.1016/j.stemcr.2018.02.003 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Moreno AM Fu X Zhu J et al. In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation[J]Mol Ther 201826(7)∶18181827. DOI: 10.1016/j.ymthe.2018.04.017 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Bakondi B Lv W Lu B et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa[J]Mol Ther 201624(3)∶556563. DOI: 10.1038/mt.2015.220 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Molday RS Kellner U Weber BH . X-linked juvenile retinoschisis:clinical diagnosis,genetic analysis,and molecular mechanisms[J]Prog Retin Eye Res 201231(3)∶195212. DOI: 10.1016/j.preteyeres.2011.12.002 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
Huang S Deshmukh H Rajagopalan KK et al. Gold nanoparticles electroporation enhanced polyplex delivery to mammalian cells[J]Electrophoresis 201435(12-13)∶18371845. DOI: 10.1002/elps.201300617 .
返回引文位置Google Scholar
百度学术
万方数据
[57]
Ronquillo CC Hanke-Gogokhia C Revelo MP et al. Ciliopathy-associated IQCB1/NPHP5 protein is required for mouse photoreceptor outer segment formation[J]FASEB J 201630(10)∶34003412. DOI: 10.1096/fj.201600511R .
返回引文位置Google Scholar
百度学术
万方数据
[58]
Wang AG Fann MJ Yu HY et al. OPA1 expression in the human retina and optic nerve[J]Exp Eye Res 200683(5)∶11711178. DOI: 10.1016/j.exer.2006.06.004 .
返回引文位置Google Scholar
百度学术
万方数据
[59]
Yang TC Chang CY Yarmishyn AA et al. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina[J]Acta Biomater 2020101484494. DOI: 10.1016/j.actbio.2019.10.037 .
返回引文位置Google Scholar
百度学术
万方数据
[60]
Moore L Yang J Lan TT et al. Biocompatibility assessment of detonation nanodiamond in non-human primates and rats using histological,hematologic,and urine analysis[J]ACS Nano 201610(8)∶73857400. DOI: 10.1021/acsnano.6b00839 .
返回引文位置Google Scholar
百度学术
万方数据
[61]
Kumaran N Moore AT Weleber RG et al. Leber congenital amaurosis/early-onset severe retinal dystrophy:clinical features,molecular genetics and therapeutic interventions[J]Br J Ophthalmol 2017101(9)∶11471154. DOI: 10.1136/bjophthalmol-2016-309975 .
返回引文位置Google Scholar
百度学术
万方数据
[62]
den Hollander AI Koenekoop RK Yzer S et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis[J]Am J Hum Genet 200679(3)∶556561. DOI: 10.1086/507318 .
返回引文位置Google Scholar
百度学术
万方数据
[63]
Ruan GX Barry E Yu D et al. CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital amaurosis 10[J]Mol Ther 201725(2)∶331341. DOI: 10.1016/j.ymthe.2016.12.006 .
返回引文位置Google Scholar
百度学术
万方数据
[64]
Maeder ML Stefanidakis M Wilson CJ et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10[J]Nat Med 201925(2)∶229233. DOI: 10.1038/s41591-018-0327-9 .
返回引文位置Google Scholar
百度学术
万方数据
[65]
Bessis N GarciaCozar FJ Boissier MC . Immune responses to gene therapy vectors:influence on vector function and effector mechanisms[J]Gene Ther 200411Suppl 1S10S17. DOI: 10.1038/sj.gt.3302364 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
唐仕波,Email:mocdef.3ab61.pivobihsgnat
B
陈建苏,Email:mocdef.3ab610002usnaijnehc
C
所有作者均声明不存在利益冲突
D
国家自然科学基金项目 (32061160469)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号