综述
ENGLISH ABSTRACT
光学相干弹性成像在眼科学领域的应用研究进展
赵雁之
黄国富 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20221116-00533
Advances in optical coherence elastography in ophthalmology
Zhao Yanzhi
Huang Guofu
Authors Info & Affiliations
Zhao Yanzhi
Ophthalmology Center, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
Huang Guofu
Ophthalmology Center, The Third Affiliated Hospital of Nanchang University, Nanchang 330000, China
Huang Guofu is working at Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
·
DOI: 10.3760/cma.j.cn115989-20221116-00533
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

光学相干弹性成像(OCE)是近年发展起来用于获取组织生物力学性能的新兴技术,类似于光学相干断层扫描血管成像,是一种功能性光学相干断层扫描成像技术。OCE技术通过探测眼球各组织在载荷激励下的力学响应,定量分析组织的应力-应变曲线或杨氏模量等生物力学指标,从而绘制出其弹性二维/三维图像。OCE具有多种优势,包括非侵入性、高分辨率、实时快速和三维成像能力;此外,该技术实现了结构图像和弹性图像相融合,能够同时提供眼组织的结构和力学属性信息,为眼科疾病的诊断和发病机制研究提供了新的视角和维度。本文从OCE的成像原理出发,就OCE的技术分类和研究现状,其在眼科领域的研究进展,包括辅助角膜屈光手术设计、圆锥角膜患者筛查、角膜交联手术疗效评估、白内障诊断分级、视网膜生物力学测量和近视发病机制研究等,以及OCE在实现眼科临床转化中面临的挑战和机遇进行综述。

光学相干断层扫描成像;光学相干弹性成像;生物力学性质;诊断技术;眼科
ABSTRACT

Optical coherence elastography (OCE) is a novel technique developed in recent years to investigate the biomechanical properties of tissues, similar to optical coherence tomography angiography, a functional version of optical coherence tomography.OCE utilizes load excitation to detect the mechanical response of ocular tissues, facilitating quantitative analysis of stress-strain curves, Young's modulus, and other biomechanical indicators.It also generates two-dimensional/three-dimensional elastic maps of the tissues.With its noninvasive, high-resolution, real-time, rapid, and three-dimensional imaging capabilities, OCE provides both structural and mechanical information about ocular tissues, opening up new dimensions in ocular disease diagnosis and pathogenesis research.This article introduced the technical classification and research status of OCE, and highlighted its research progress in ophthalmology, including its applications in assisted refractive surgery design, keratoconus patient screening, assessment of corneal cross-linking surgery efficacy, cataract diagnosis and grading, measurement of retinal biomechanics, and research into myopia pathogenesis.The challenges and opportunities for clinical translation of OCE in ophthalmology were also discussed.

Optical coherence tomography;Optical coherence elastography;Biomechanics;Diagnostic techniques;Ophthalmology
Huang Guofu, Email: mocdef.aabnis2222fgh
引用本文

赵雁之,黄国富. 光学相干弹性成像在眼科学领域的应用研究进展[J]. 中华实验眼科杂志,2023,41(10):1043-1048.

DOI:10.3760/cma.j.cn115989-20221116-00533

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
人体组织病理性改变通常会伴随力学特征,如硬度、弹性、黏弹性等的变化,弹性成像技术通过测量组织或器官在载荷激励下的形变来获得该组织器官的生物力学信息,从而提供有价值的临床诊断信息。光学相干弹性成像(optical coherence elastography,OCE)是一种基于宽带光谱的干涉原理获取组织生物力学性质的新兴技术。OCE是光学相干断层扫描(optical coherence tomography,OCT)技术的延伸,类似于光学相干断层扫描血管成像,是一种功能性OCT,可以同时提供组织的结构和生物力学性质信息。OCE不仅保持了OCT的无创、非侵入、高分辨率、实时快速三维成像的优势,而且可以实现生物组织的高精度弹性定量检测。1998年Schmitt[ 1 ]首次提出,OCE技术已被用于多个学科的疾病诊断和治疗监测,包括眼科学、肿瘤学、皮肤病学和心脏病学等[ 2 , 3 , 4 , 5 ],特别是在眼组织生物力学性质检测方面表现出了巨大的应用潜能。目前OCE技术在角膜、晶状体、视网膜等组织弹性成像方面的可行性及准确性已得到了充分验证[ 6 , 7 ]。本文将从OCE成像原理出发,介绍OCE检测眼组织生物力学性质的相关研究及进展,并探讨当前OCE技术在眼科临床转化应用中面临的挑战和未来发展方向。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Schmitt J OCT elastography:imaging microscopic deformation and strain of tissue[J]. Opt Express 19983(6):199-211. DOI: 10.1364/oe.3.000199 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Zvietcovich F , Nair A , Singh M , et al. In vivo assessment of corneal biomechanics under a localized cross-linking treatment using confocal air-coupled optical coherence elastography[J]. Biomed Opt Express 202213(5):2644-2654. DOI: 10.1364/BOE.456186 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Gubarkova EV , Sovetsky AA , Vorontsov DA , et al. Compression optical coherence elastography versus strain ultrasound elastography for breast cancer detection and differentiation:pilot study[J]. Biomed Opt Express 202213(5):2859-2881. DOI: 10.1364/BOE.451059 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Kalra A , Lowe A An overview of factors affecting the skins youngs modulus[J/OL]. J Aging Sci 20164:2[2023-03-10]. https://www.researchgate.net/publication/307613863_An_Overview_of_Factors_Affecting_the_Skins_Youngs_Modulus. DOI: 10.4172/2329-8847.1000156 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Bays HE , Khera A , Blaha MJ , et al. Ten things to know about ten imaging studies:a preventive cardiology perspective ( "ASPC top ten imaging" )[J/OL]. Am J Prev Cardiol 20216:100176[2023-03-10]. https://pubmed.ncbi.nlm.nih.gov/34327499/. DOI: 10.1016/j.ajpc.2021.100176 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Kirby MA , Pelivanov I , Song S , et al. Optical coherence elastography in ophthalmology[J]. J Biomed Opt 201722(12):1-28. DOI: 10.1117/1.JBO.22.12.121720 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Larin KV , Sampson DD . Optical coherence elastography-OCT at work in tissue biomechanics[Invited][J]. Biomed Opt Express 20178(2):1172-1202. DOI: 10.1364/BOE.8.001172 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Kennedy KM , Chin L , McLaughlin RA , et al. Quantitative micro-elastography:imaging of tissue elasticity using compression optical coherence elastography[J/OL]. Sci Rep 20155:15538[2023-03-11]. https://pubmed.ncbi.nlm.nih.gov/26503225/. DOI: 10.1038/srep15538 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Kling S Optical coherence elastography by ambient pressure modulation for high-resolution strain mapping applied to patterned cross-linking[J/OL]. J R Soc Interface 202017(162):20190786[2023-03-11]. https://pubmed.ncbi.nlm.nih.gov/31964268/. DOI: 10.1098/rsif.2019.0786 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
De Stefano VS , Ford MR , Seven I , et al. Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography[J/OL]. PLoS One 201813(12):e0209480[2023-03-12]. https://pubmed.ncbi.nlm.nih.gov/30592752/. DOI: 10.1371/journal.pone.0209480 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Lan G , Gu B , Larin KV , et al. Clinical corneal optical coherence elastography measurement precision:effect of heartbeat and respiration[J/OL]. Transl Vis Sci Technol 20209(5):3[2023-03-12]. https://pubmed.ncbi.nlm.nih.gov/32821475/. DOI: 10.1167/tvst.9.5.3 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Nair A , Singh M , Aglyamov SR , et al. Heartbeat OCE:corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography[J]. J Biomed Opt 202025(5):1-9. DOI: 10.1117/1.JBO.25.5.055001 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Liang X , Boppart SA . Biomechanical properties of in vivo human skin from dynamic optical coherence elastography[J]. IEEE Trans Biomed Eng 201057(4):953-959. DOI: 10.1109/TBME.2009.2033464 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Zhu Y , Zhao Y , Zhang Y , et al. In vivo evaluation of the effects of SMILE with different amounts of stromal ablation on corneal biomechanics by optical coherence elastography[J/OL]. Diagnostics (Basel) 202213(1):30[2023-03-13]. https://pubmed.ncbi.nlm.nih.gov/36611322/. DOI: 10.3390/diagnostics13010030 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Han Z , Aglyamov SR , Li J , et al. Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation[J/OL]. J Biomed Opt 201520(2):20501[2023-03-14]. https://pubmed.ncbi.nlm.nih.gov/25649624/. DOI: 10.1117/1.JBO.20.2.020501 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Han Z , Li J , Singh M , et al. Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model[J]. J Mech Behav Biomed Mater 201766:87-94. DOI: 10.1016/j.jmbbm.2016.11.004 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Li Y , Zhu J , Chen JJ , et al. Simultaneously imaging and quantifying in vivo mechanical properties of crystalline lens and cornea using optical coherence elastography with acoustic radiation force excitation[J/OL]. APL Photonics 20194(10):106104[2023-03-15]. https://pubmed.ncbi.nlm.nih.gov/32309636/. DOI: 10.1063/1.5118258 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Ramier A , Tavakol B , Yun SH . Measuring mechanical wave speed,dispersion,and viscoelastic modulus of the cornea using optical coherence elastography[J/OL]. Opt Express 201927(12):16635-16649[2023-03-15]. https://pubmed.ncbi.nlm.nih.gov/31252887/. DOI: 10.1364/OE.27.016635 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Wang S , Larin KV . Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics[J]. Opt Lett 201439(1):41-44. DOI: 10.1364/OL.39.000041 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Wu C , Aglyamov SR , Han Z , et al. Assessing the biomechanical properties of the porcine crystalline lens as a function of intraocular pressure with optical coherence elastography[J]. Biomed Opt Express 20189(12):6455-6466. DOI: 10.1364/BOE.9.006455 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Ambroziński Ł , Pelivanov I , Song S , et al. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media[J/OL]. Appl Phys Lett 2016109(4):043701[2023-03-15]. https://pubmed.ncbi.nlm.nih.gov/27493276/. DOI: 10.1063/1.4959827 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Jin Z , Khazaeinezhad R , Zhu J , et al. In-vivo 3D corneal elasticity using air-coupled ultrasound optical coherence elastography[J]. Biomed Opt Express 201910(12):6272-6285. DOI: 10.1364/BOE.10.006272 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Zvietcovich F , Nair A , Ambekar YS , et al. Confocal air-coupled ultrasonic optical coherence elastography probe for quantitative biomechanics[J]. Opt Lett 202045(23):6567-6570. DOI: 10.1364/OL.410593 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Pitre JJ Jr, Kirby MA , Li DS , et al. Nearly-incompressible transverse isotropy (NITI) of cornea elasticity:model and experiments with acoustic micro-tapping OCE[J/OL]. Sci Rep 202010(1):12983[2023-03-15]. https://pubmed.ncbi.nlm.nih.gov/32737363/. DOI: 10.1038/s41598-020-69909-9 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Zvietcovich F , Larin KV . Wave-based optical coherence elastography:the 10-year perspective[J/OL]. Prog Biomed Eng (Bristol) 20224(1):012007[2023-03-16]. https://pubmed.ncbi.nlm.nih.gov/35187403/. DOI: 10.1088/2516-1091/ac4512 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Ford MR , Dupps WJ Jr, Rollins AM , et al. Method for optical coherence elastography of the cornea[J/OL]. J Biomed Opt 201116(1):016005[2023-03-16]. https://pubmed.ncbi.nlm.nih.gov/21280911/. DOI: 10.1117/1.3526701 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Wang S , Larin KV . Noncontact depth-resolved micro-scale optical coherence elastography of the cornea[J]. Biomed Opt Express 20145(11):3807-3821. DOI: 10.1364/BOE.5.003807 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Zvietcovich F , Pongchalee P , Meemon P , et al. Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers[J/OL]. Nat Commun 201910(1):4895[2023-03-16]. https://pubmed.ncbi.nlm.nih.gov/31653846/. DOI: 10.1038/s41467-019-12803-4 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Ramier A , Eltony AM , Chen Y , et al. In vivo measurement of shear modulus of the human cornea using optical coherence elastography[J/OL]. Sci Rep 202010(1):17366[2023-03-16]. https://pubmed.ncbi.nlm.nih.gov/33060714/. DOI: 10.1038/s41598-020-74383-4 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Roberts CJ , Dupps WJ Jr. Biomechanics of corneal ectasia and biomechanical treatments[J]. J Cataract Refract Surg 201440(6):991-998. DOI: 10.1016/j.jcrs.2014.04.013 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Bao F , Geraghty B , Wang Q , et al. Consideration of corneal biomechanics in the diagnosis and management of keratoconus:is it important?[J/OL]. Eye Vis (Lond) 20163:18[2023-03-16]. https://pubmed.ncbi.nlm.nih.gov/27382596/. DOI: 10.1186/s40662-016-0048-4 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
De Stefano VS , Ford MR , Seven I , et al. Depth-dependent corneal biomechanical properties in normal and keratoconic subjects by optical coherence elastography[J/OL]. Transl Vis Sci Technol 20209(7):4[2023-03-16]. https://pubmed.ncbi.nlm.nih.gov/32832211/. DOI: 10.1167/tvst.9.7.4 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Zhao Y , Yang H , Li Y , et al. Quantitative assessment of biomechanical properties of the human keratoconus cornea using acoustic radiation force optical coherence elastography[J/OL]. Transl Vis Sci Technol 202211(6):4[2023-03-17]. https://pubmed.ncbi.nlm.nih.gov/35666497/. DOI: 10.1167/tvst.11.6.4 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Zhou Y , Wang Y , Shen M , et al. In vivo evaluation of corneal biomechanical properties by optical coherence elastography at different cross-linking irradiances[J]. J Biomed Opt 201924(10):1-7. DOI: 10.1117/1.JBO.24.10.105001 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Ferguson TJ , Singuri S , Jalaj S , et al. Depth-resolved corneal biomechanical changes measured via optical coherence elastography following corneal crosslinking[J/OL]. Transl Vis Sci Technol 202110(5):7[2023-03-17]. https://pubmed.ncbi.nlm.nih.gov/34313710/. DOI: 10.1167/tvst.10.5.7 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Zhang H , Wu C , Singh M , et al. Optical coherence elastography of cold cataract in porcine lens[J]. J Biomed Opt 201924(3):1-7. DOI: 10.1117/1.JBO.24.3.036004 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Zhang H , Singh M , Nair A , et al. Elasticity changes in the crystalline lens during oxidative damage and the antioxidant effect of alpha-lipoic acid measured by optical coherence elastography:6[J/OL]. Photonics 20218(6):207[2023-03-17]. https://www.mdpi.com/2304-6732/8/6/207. DOI: 10.3390/photonics8060207 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Wu C , Han Z , Wang S , et al. Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system[J]. Invest Ophthalmol Vis Sci 201556(2):1292-1300. DOI: 10.1167/iovs.14-15654 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Mekonnen T , Zevallos-Delgado C , Zhang H , et al. The lens capsule significantly affects the viscoelastic properties of the lens as quantified by optical coherence elastography[J/OL]. Front Bioeng Biotechnol 202311:1134086[2023-08-25]. https://www.frontiersin.org/articles/10.3389/fbioe.2023.1134086. DOI: 10.3389/fbioe.2023.1134086 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
He Y , Qu Y , Zhu J , et al. Confocal shear wave acoustic radiation force optical coherence elastography for imaging and quantification of the in vivo posterior eye[J/OL]. IEEE J Sel Top Quantum Electron 201925(1): 10.1109/jstqe.2018.2834435 [2023-03-17]. https://pubmed.ncbi.nlm.nih.gov/32042240/. DOI:.
返回引文位置Google Scholar
百度学术
万方数据
[41]
Li R , Du Z , Qian X , et al. High resolution optical coherence elastography of retina under prosthetic electrode[J]. Quant Imaging Med Surg 202111(3):918-927. DOI: 10.21037/qims-20-1137 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Bronte-Ciriza D , Birkenfeld JS , de la Hoz A , et al. Estimation of scleral mechanical properties from air-puff optical coherence tomography[J]. Biomed Opt Express 202112(10):6341-6359. DOI: 10.1364/BOE.437981 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Zvietcovich F , Nair A , Singh M , et al. Dynamic optical coherence elastography of the anterior eye:understanding the biomechanics of the limbus[J/OL]. Invest Ophthalmol Vis Sci 202061(13):7[2023-08-25]. https://pubmed.ncbi.nlm.nih.gov/33141893/. DOI: 10.1167/iovs.61.13.7 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Vinas-Pena M , Feng X , Li GY , et al. In situ measurement of the stiffness increase in the posterior sclera after UV-riboflavin crosslinking by optical coherence elastography[J]. Biomed Opt Express 202213(10):5434-5446. DOI: 10.1364/BOE.463600 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
黄国富,Email:mocdef.aabnis2222fgh
B
所有作者均声明不存在利益冲突
C
国家自然科学基金项目 (82360215)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号