论著
ENGLISH ABSTRACT
miR-1、miR-133b与肝泡型棘球蚴病患者肝纤维化的关系
阿依努尔·艾尔肯
阿卜杜艾尼·啊卜力孜
塔来提·吐尔干
蒋铁民
古丽米拉·亚森江
艾赛提·吐尔干
伊力扎提·艾买提江
沙衣提江·努尔买买提
李锦田
罗黎
吐尔干艾力·阿吉
作者及单位信息
·
DOI: 10.3760/cma.j.cn231583-20220119-00016
Association between miR-1, miR-133b and liver fibrosis in patients with hepatic alveolar echinococcosis
Ayinuer Aierken
Abuduaini Abulizi
Talaiti Tuergan
Jiang Tiemin
Gulimila Yasenjiang
Aisaiti Tuergan
Yilizhati Aimaitijiang
Shayitijiang Nuermaimaiti
Li Jintian
Luo Li
Tuergan'aili Aji
Authors Info & Affiliations
Ayinuer Aierken
Hepatobiliary & Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830054, China
Abuduaini Abulizi
Hepatobiliary & Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830054, China
Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
Talaiti Tuergan
Hepatobiliary & Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830054, China
Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
Jiang Tiemin
Hepatobiliary & Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830054, China
Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
Gulimila Yasenjiang
Hepatobiliary & Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830054, China
Aisaiti Tuergan
Hepatobiliary & Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830054, China
Yilizhati Aimaitijiang
Hepatobiliary & Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830054, China
Shayitijiang Nuermaimaiti
Hepatobiliary & Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830054, China
Li Jintian
College of Public Health, Xinjiang Medical University, Urumqi 830054, China
Luo Li
Hepatobiliary & Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830054, China
Tuergan'aili Aji
Hepatobiliary & Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830054, China
Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
Clinical Medical Research Center of Hepatobiliary Diseases and Hydatid Disease, Xinjiang Uygur Autonomous Region, Urumqi 830054, China
·
DOI: 10.3760/cma.j.cn231583-20220119-00016
194
24
0
0
0
0
PDF下载
APP内阅读
摘要

目的探讨肝泡型棘球蚴病患者肝纤维化与微小核糖核酸(microRNA,miR)-1、miR-133b的相关性。

方法选择2020年10月至2021年4月在新疆医科大学第一附属医院明确诊断为肝泡型棘球蚴病(9例)、肝硬化(9例)、肝细胞癌(5例)患者作为研究对象,并以同期健康志愿者为对照(10例),采集所有对象外周血样本制备血浆,经实时荧光定量PCR法检测外周血miR-1、miR-133b表达量;同时,自5例肝泡型棘球蚴病患者采集肝脏病灶周围组织(近端)、距病灶约5 cm处相应组织(远端),并采用免疫组织化学染色法检测肝泡型棘球蚴病患者肝脏病灶近、远端的细胞活化相关指标[细胞周期蛋白D1(CyclinD1)、细胞周期蛋白依赖性激酶1(CDK1)、α平滑肌肌动蛋白(α-SMA)],纤维化指标[Ⅰ、Ⅲ型胶原蛋白(CollagenⅠ、CollagenⅢ)],转化生长因子β1(TGF-β1)信号通路相关基因[TGF-β1,Ⅰ、Ⅱ型转化生长因子β1受体(TGF-β1RⅠ、TGF-β1RⅡ)]及其下游相关蛋白(SMAD2、SMAD3)表达情况。

结果实时荧光定量PCR结果显示,肝泡型棘球蚴病、肝硬化、肝细胞癌和对照组人群外周血miR-1、miR-133b表达水平比较,差异均有统计学意义( H = 16.54、28.40,均 P < 0.001);其中,肝泡型棘球蚴病组miR-1、miR-133b表达水平均高于对照组、肝硬化组(均 P < 0.05)。肝泡型棘球蚴病患者病灶近端和远端CDK1(0.46 ± 0.02、0.42 ± 0.01),α-SMA(0.54 ± 0.09、0.51 ± 0.07),TGF-β1(0.55 ± 0.15、0.51 ± 0.13),TGF-β1RⅠ(0.58 ± 0.09、0.57 ± 0.08),TGF-β1RⅡ表达水平(0.40 ± 0.05、0.39 ± 0.05)比较,差异均有统计学意义( t = 5.56、3.17、3.18、4.27、5.65, P = 0.005、0.034、0.034、0.024、0.011);CyclinD1、CollagenⅠ、CollagenⅢ、SMAD2、SMAD3表达水平比较,差异均无统计学意义( t = 3.06、3.06、2.86、1.43、1.50, P = 0.055、0.055、0.064、0.247、0.230)。Pearson相关分析结果显示,肝泡型棘球蚴病患者外周血miR-1与肝脏病灶近端TGF-β1RⅠ表达水平呈正相关( P = 0.001);miR-1、miR-133b与CDK1、α-SMA、TGF-β1、TGF-β1RⅡ表达水平均无相关性(均 P > 0.05)。

结论肝泡型棘球蚴病患者肝脏病灶近端TGF-β1信号通路相关因子表达上调;外周血miR-1和miR-133b表达上调,且miR-1与肝脏病灶近端TGF-β1RⅠ表达水平呈正相关,提示miR-1可能促进肝泡型棘球蚴病肝纤维化发生。

棘球蚴病,肝;肝纤维化;微小核糖核酸
ABSTRACT

ObjectiveTo investigate the relationship between microRNA (miR)-1, miR-133b and hepatic fibrosis in patients with hepatic alveolar echinococcosis.

MethodsFrom October 2020 to April 2021, patients who were definitely diagnosed as hepatic alveolar echinococcosis (9 cases), cirrhosis (9 cases) and hepatocellular carcinoma (5 cases) in the First Affiliated Hospital of Xinjiang Medical University were selected as the research subjects, and healthy volunteers in the same period were taken as the control (10 cases). Peripheral blood samples of all subjects were collected to prepare plasma, and the expression levels of miR-1 and miR-133b in peripheral blood were detected by quantitative real-time PCR. At the same time, tissue samples around the liver lesion (proximal), and the corresponding tissues about 5 cm from the lesion (distal) were collected from 5 patients with hepatic alveolar echinococcosis, and immunohistochemical staining was used to detect the cell activation related indicators [cyclinD1, cyclin dependent kinase 1 (CDK1), α-smooth muscle actin (α-SMA)], fibrosis indicators (Collagen Ⅰ, Collagen Ⅲ), transforming growth factor-β1 (TGF-β1) signal pathway related genes [TGF-β1, TGF-β1 receptor type Ⅰ/Ⅱ (TGF-β1RⅠ, TGF-β1RⅡ)] and its downstream related proteins (SMAD2, SMAD3).

ResultsThe quantitative real-time PCR results showed that there were significant differences in the expression levels of miR-1 and miR-133b in the peripheral blood of patients with hepatic alveolar echinococcosis, cirrhosis, hepatocellular carcinoma and the control group ( H = 16.54, 28.40, P < 0.001); the expression levels of miR-1 and miR-133b in hepatic alveolar echinococcosis group were higher than those in control group, cirrhosis group ( P < 0.05). The expression levels of CDK1 (0.46 ± 0.02, 0.42 ± 0.01), α-SMA (0.54 ± 0.09, 0.51 ± 0.07), TGF-β1 (0.55 ± 0.15, 0.51 ± 0.13), TGF-β1RⅠ (0.58 ± 0.09, 0.57 ± 0.08), and TGF-β1RⅡ(0.40 ± 0.05, 0.39 ± 0.05) between the proximal and distal tissue of liver lesion in hepatic alveolar echinococcosis patients were statistically significantly different ( t = 5.56, 3.17, 3.18, 4.27, 5.65, P = 0.005, 0.034, 0.034, 0.024, 0.011). There was no statistically significant difference in the expression levels of CyclinD1, Collagen Ⅰ, Collagen Ⅲ, SMAD2 and SMAD3 between the proximal and distal tissue of liver lesion in hepatic alveolar echinococcosis patients ( t = 3.06, 3.06, 2.86, 1.43, 1.50, P = 0.055, 0.055, 0.064, 0.247, 0.230). Pearson correlation analysis showed that miR-1 in the patients' peripheral blood was positively correlated with TGF-β1RⅠ in the proximal tissue of the liver lesion ( P = 0.001); there was no correlation between miR-1, miR-133b and CDK1, α-SMA, TGF-β1, TGF-β1RⅡ( P > 0.05).

ConclusionsThe expression of TGF-β1 signaling pathway related factors in the proximal tissue of liver lesion in patients with hepatic alveolar echinococcosis is up-regulated. The expression of miR-1 and miR-133b in peripheral blood is upregulated, and miR-1 is positively correlated with TGF-β1RⅠ level in proximal tissue of liver lesion, suggesting that miR-1 may promote the occurrence of liver fibrosis in hepatic alveolar echinococcosis.

Echinococcosis, hepatic;Liver fibrosis;MicroRNA
Tuergan'aili Aji, Email: mocdef.aabnis87nagreut
引用本文

阿依努尔·艾尔肯,阿卜杜艾尼·啊卜力孜,塔来提·吐尔干,等. miR-1、miR-133b与肝泡型棘球蚴病患者肝纤维化的关系[J]. 中华地方病学杂志,2023,42(09):689-696.

DOI:10.3760/cma.j.cn231583-20220119-00016

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
泡型棘球蚴病是一种由多房棘球绦虫幼虫感染所致的人畜共患病,其高流行地区主要在北半球,特别是中欧地区、中国西部和日本 [ 1 , 2 ]。泡型棘球蚴病通常是慢性的,早期无临床症状,原发病变主要在肝脏 [ 3 ],称为肝泡型棘球蚴病,因其浸润性生长的生物学行为也被称为"虫癌"。研究表明,该病在明确诊断后若未进行相关治疗,约90%的患者会在10年内死亡 [ 4 ]。肝泡型棘球蚴病的治疗原则是以根治性手术切除为主 [ 5 ]、药物治疗(阿苯达唑)为辅,多数晚期肝泡型棘球蚴病患者的最终选择即为肝移植 [ 6 , 7 ]
肝纤维化是肝脏严重损害疾病的共同临床特征 [ 8 ]。在肝纤维化中肝星状细胞是形成细胞外基质蛋白的主要细胞,肝星状细胞活化后分化的肌成纤维细胞是肝纤维化的关键因素 [ 9 ]。肝泡型棘球蚴病的特征是在寄生虫肉芽肿周围形成不同程度的纤维化,肝实质被寄生虫病灶、坏死细胞和纤维化所取代 [ 8 ]。转化生长因子β1(TGF-β1)是肝纤维化发生发展的重要细胞因子,多房棘球绦虫原头节通过直接靶向Ⅰ、Ⅱ型转化生长因子β1受体(TGF-β1RⅠ、Ⅱ)诱导肝星状细胞活化并产生具有肝纤维化作用的蛋白质,即Ⅰ型胶原蛋白(CollagenⅠ)、α平滑肌肌动蛋白(α-SMA)和骨桥蛋白(OPN) [ 9 ]。多房棘球绦虫感染后囊液可以通过上调成纤维细胞中基质金属蛋白酶(MMP)2和MMP9的表达促进成纤维细胞的增殖、迁移和侵袭 [ 10 ]
微小核糖核酸(microRNA,miR)是一类长度为21 ~ 23个核苷酸、非编码的内源性RNA,通过与靶mRNA非编码区的互补位点结合导致转录降解或翻译抑制 [ 11 , 12 ]。因此,它们在细胞增殖、分化、凋亡和基因调控等生物过程中起关键作用 [ 13 ]。已有研究表明,多种miR在肝泡型棘球蚴病中作为生物标志物具有较高的诊断性能 [ 14 , 15 ]。miR-1和miR-133是在心脏和骨骼肌中特异性表达的miR [ 16 ]。其中,miR-1是一类高度保守的miR,作为一种肿瘤抑制基因已被证实在多种人类癌症中下调 [ 17 ]。miR-133家族有miR-133a、miR-133b两个成员,可在肝脏中作为肿瘤抑制剂发挥作用 [ 18 ]。为此,探讨miR-1和miR-133b在肝泡型棘球蚴病患者肝脏纤维化中的作用具有一定的临床意义。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Wen H , Vuitton L , Tuxun T ,et al. Echinococcosis: Advances in the 21st Century[J]. Clin Microbiol Rev, 2019,32(2):e00075-18. DOI: 10.1128/cmr.00075-18 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Bi XJ , Shao YM , Li L ,et al. Evaluation of the diagnostic value of the immunoblotting and ELISA tests using recombinant Em18 antigen in human alveolar echinococcosis from Xingjiang China[J]. Exp Ther Med, 2018,16(4):3155-3160. DOI: 10.3892/etm.2018.6555 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Graeter T , Bao HH , Shi R ,et al. Evaluation of intrahepatic manifestation and distant extrahepatic disease in alveolar echinococcosis[J]. World Journal of Gastroenterology, 2020,26(29):4302-4315. DOI: 10.3748/wjg.v26.i29.4302 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Pohnan R , Ryska M , Hytych V ,et al. Echinococcosis mimicking liver malignancy: A case report[J]. International Journal of Surgery Case Reports, 2017,36:55-58. DOI: 10.1016/j.ijscr.2017.04.032 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
唐群科,张瑛,叶雨辰. 泡型包虫病治疗的研究进展[J]. 中华地方病学杂志, 2021,40(2):169-172. 10.3760/cma.j.cn231583-20200423-00099 .
返回引文位置Google Scholar
百度学术
万方数据
Tang QK , Zhang Y , Ye YC . Research progress in treatment of alveolar echinococcosis[J]. Chin J Endemiol, 2021,40(2):169-172. DOI: 10.3760/cma.j.cn231583-20200423-00099 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[6]
Hemphill A , Stadelmann B , Rufener R ,et al. Treatment of echinococcosis: albendazole and mebendazole--what else?[J]. Parasite, 2014,21:70. DOI: 10.1051/parasite/2014073 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Aji T , Dong JH , Shao YM ,et al. Ex vivo liver resection and autotransplantation as alternative to allotransplantation for end-stage hepatic alveolar echinococcosis [J]. J Hepatol, 2018,69(5):1037-1046. DOI: 10.1016/j.jhep.2018.07.006 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Anthony B , Allen JT , Li YSS ,et al. Hepatic stellate cells and parasite-induced liver fibrosis[J]. Parasites & Vectors , 2010,3(1):60. DOI: 10.1186/1756-3305-3-60 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Cao D , Shamsan E , Jiang B ,et al. Structural changes and expression of hepatic fibrosis-related proteins in coculture of Echinococcus multilocularis protoscoleces and human hepatic stellate cells [J]. Parasit Vectors, 2021,14(1):593. DOI: 10.1186/s13071-021-05037-1 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Liu C , Bi X , Fan H ,et al. Microcyst fluid promotes the migration and invasion of fibroblasts in the adventitial layer of alveolar echinococcosis[J]. Acta Trop, 2021,223:106084. DOI: 10.1016/j.actatropica.2021.106084 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Liu Y , Geng H , Liu X ,et al. A meta-analysis of circulating microRNAs in the diagnosis of papillary thyroid carcinoma[J]. PLoS One, 2021,16(5):e0251676. DOI: 10.1371/journal.pone.0251676 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Vienberg S , Geiger J , Madsen S ,et al. MicroRNAs in metabolism[J]. Acta Physiol (Oxf), 2017,219(2):346-361. DOI: 10.1111/apha.12681 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Ahadi A . A systematic review of microRNAs as potential biomarkers for diagnosis and prognosis of gastric cancer[J]. Immunogenetics, 2021,73(2):155-161. DOI: 10.1007/s00251-020-01201-6 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Cao DP , Jiang BF , Zhang YG ,et al. microRNA-125b-5p is a promising novel plasma biomarker for alveolar echinococcosis in patients from the southern province of Qinghai[J]. BMC Infect Dis, 2021,21(1):246. DOI: 10.1186/s12879-021-05940-z .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Ren B , Wang H , Ren L ,et al. Screening for microRNA-based diagnostic markers in hepatic alveolar echinococcosis[J]. Medicine (Baltimore), 2019,98(37):e17156. DOI: 10.1097/md.0000000000017156 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Al-Kafaji G , Al-Muhtaresh HA , Salem AH . Expression and clinical significance of miR-1 and miR-133 in pre-diabetes[J]. Biomed Rep, 2021,14(3):33. DOI: 10.3892/br.2021.1409 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Khan P , Ebenezer NS , Siddiqui JA ,et al. MicroRNA-1: Diverse role of a small player in multiple cancers[J]. Semin Cell Dev Biol, 2022,124:114-126. DOI: 10.1016/j.semcdb.2021.05.020 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Gjymishka A , Pi L , Oh SH ,et al. miR-133b regulation of connective tissue growth factor: A novel mechanism in liver pathology [J]. Am J Pathol, 2016,186(5):1092-1102. DOI: 10.1016/j.ajpath.2015.12.022 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Zhang C , Lin R , Li Z ,et al. Immune exhaustion of T cells in alveolar echinococcosis patients and its reversal by blocking checkpoint receptor TIGIT in a murine model[J]. Hepatology, 2020,71(4):1297-1315. DOI: 10.1002/hep.30896 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Zhang C , Wang H , Li J ,et al. Involvement of TIGIT in natural killer cell exhaustion and immune escape in patients and mouse model with liver Echinococcus multilocularis infection [J]. Hepatology, 2021,74(6):3376-3393. DOI: 10.1002/hep.32035 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Morikawa M , Derynck R , Miyazono K . TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology[J]. Cold Spring Harb Perspect Biol, 2016,8(5):a021873. DOI: 10.1101/cshperspect.a021873 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Wang J , Zhang C , Wei X ,et al. TGF-β and TGF-β/Smad signaling in the interactions between Echinococcus multilocularis and its hosts [J]. PLoS One, 2013,8(2):e55379. DOI: 10.1371/journal.pone.0055379 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Qin W , Chung AC , Huang XR ,et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29[J]. J Am Soc Nephrol, 2011,22(8):1462-74. DOI: 10.1681/asn.2010121308 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Zhong X , Chung AC , Chen HY ,et al. Smad3-mediated upregulation of miR-21 promotes renal fibrosis[J]. J Am Soc Nephrol, 2011,22(9):1668-1681. DOI: 10.1681/asn.2010111168 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Lee EH , Park KI , Kim KY ,et al. Liquiritigenin inhibits hepatic fibrogenesis and TGF-β1/Smad with Hippo/YAP signal[J]. Phytomedicine, 2019,62:152780. DOI: 10.1016/j.phymed.2018.12.003 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Qi Y , Wang D , Huang W ,et al. CyclinD1 inhibits dicer and crucial miRNA expression by chromatin modification to promote the progression of intrahepatic cholangiocarcinoma[J]. J Exp Clin Cancer Res, 2019,38(1):413. DOI: 10.1186/s13046-019-1415-5 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Gayek AS , Ohi R . CDK-1 inhibition in G2 stabilizes kinetochore-microtubules in the following mitosis[J]. PLoS One, 2016,11(6):e0157491. DOI: 10.1371/journal.pone.0157491 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Liu Y , Tian F , Shan J ,et al. Kupffer cells: Important participant of hepatic alveolar echinococcosis[J]. Front Cell Infect Microbiol, 2020,10:8. DOI: 10.3389/fcimb.2020.00008 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Datta J , Kutay H , Nasser MW ,et al. Methylation mediated silencing of microRNA-1 gene and its role in hepatocellular carcinogenesis[J]. Cancer Res, 2008,68(13):5049-5058. DOI: 10.1158/0008-5472.Can-07-6655 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Letelier P , García P , Leal P ,et al. miR-1 and miR-145 act as tumor suppressor microRNAs in gallbladder cancer[J]. Int J Clin Exp Pathol, 2014,7(5):1849-1867.
返回引文位置Google Scholar
百度学术
万方数据
[31]
Kano M , Seki N , Kikkawa N ,et al. miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma[J]. Int J Cancer, 2010,127(12):2804-2814. DOI: 10.1002/ijc.25284 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Zhang Q , Fan X , Xu B ,et al. miR-133b acts as a tumor suppressor and negatively regulates EMP2 in glioma[J]. Neoplasma, 2018,65(4):494-504. DOI: 10.4149/neo_2018_170510N337 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Macchiaroli N , Preza M , Perez MG ,et al. Expression profiling of Echinococcus multilocularis miRNAs throughout metacestode development in vitro [J]. PLoS Negl Trop Dis, 2021,15(3):e0009297. DOI: 10.1371/journal.pntd.0009297 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Wang S , Huang M , Wang Z ,et al. MicroRNA-133b targets TGFβ r eceptor Ⅰ to inhibit TGF-β-induced epithelial to mesenchymal transition and metastasis by suppressing the TGF-β/SMAD pathway in breast cancer [J]. Int J Oncol, 2019,55(5):1097-1109. DOI: 10.3892/ijo.2019.4879 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Roderburg C , Luedde M , Vargas Cardenas D ,et al. miR-133a mediates TGF-β-dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis[J]. J Hepatol, 2013,58(4):736-742. DOI: 10.1016/j.jhep.2012.11.022 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Chen JF , Mandel EM , Thomson JM ,et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nat Genet, 2006,38(2):228-233. DOI: 10.1038/ng1725 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Sun Z , Ma Y , Chen F ,et al. miR-133b and miR-199b knockdown attenuate TGF-β1-induced epithelial to mesenchymal transition and renal fibrosis by targeting SIRT1 in diabetic nephropathy[J]. Eur J Pharmacol, 2018,837:96-104. DOI: 10.1016/j.ejphar.2018.08.022 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
吐尔干艾力·阿吉,Email: mocdef.aabnis87nagreut
B

阿依努尔·艾尔肯:论文撰写;阿卜杜艾尼·啊卜力孜、塔来提·吐尔干、蒋铁民:实验设计、论文修改与指导;古丽米拉·亚森江、艾赛提·吐尔干、伊力扎提·艾买提江、沙衣提江·努尔买买提:标本收集;李锦田:数据收集;罗黎:数据分析;吐尔干艾力·阿吉:论文修改与指导、经费支持

C
所有作者声明无利益冲突
D
省部共建中亚高发病成因与防治国家重点实验室开放课题 (SKL-HIDCA-2021-4)
国家自然科学基金 (81960377)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号