临床研究
ENGLISH ABSTRACT
基于人工智能自动分析技术的视网膜血管形态参数测量及特征分析
史绪晗
董力
邵蕾
凌赛广
董洲
牛莹
张瑞恒
周文达
魏文斌
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20220715-00326
Measurement and characterization of retinal vascular morphology parameters based on artificial intelligence automated analysis technology
Shi Xuhan
Dong Li
Shao Lei
Ling Saiguang
Dong Zhou
Niu Ying
Zhang Ruiheng
Zhou Wenda
Wei Wenbin
Authors Info & Affiliations
Shi Xuhan
Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
Dong Li
Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
Shao Lei
Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
Ling Saiguang
EVision Technology (Beijing) Co.LTD, Beijing 100085, China
Dong Zhou
EVision Technology (Beijing) Co.LTD, Beijing 100085, China
Niu Ying
EVision Technology (Beijing) Co.LTD, Beijing 100085, China
Zhang Ruiheng
Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
Zhou Wenda
Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
Wei Wenbin
Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
·
DOI: 10.3760/cma.j.cn115989-20220715-00326
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

目的基于人工智能技术对视网膜血管形态学参数进行全自动定量测量,分析我国北方50岁以上人群视网膜血管参数及分布特征。

方法采用横断面研究方法,纳入2011年1月至2021年12月就诊于北京同仁医院的50岁以上无眼底病的患者1 842例,对纳入的受试者进行标准化问卷调查、抽血和眼科检查;收集各受试者任意一眼以视盘为中心的彩色眼底照片,采用基于深度学习的语义分割网络ResNet101-Unet构建血管分割模型,进行全自动视网膜血管参数定量测量,主要测量指标包括视网膜血管分支夹角、血管分形维数、血管平均管径和血管平均弯曲度。比较不同性别间各视网膜参数的差异。采用多元线性回归分析法分析最佳矫正视力、眼压、眼轴长度等眼部因素和性别、年龄、高血压、糖尿病、心血管疾病等全身因素是否是各视网膜血管参数的影响因素。

结果模型对于血管分割和视盘分割的准确度均高于0.95。1 842例受试者血管分支夹角为(51.023±11.623)°;血管分形维数为1.573(1.542,1.592);血管平均管径为64.124(60.814,69.053)μm;血管平均弯曲度为(0.001 062±0.000 165)°。男性血管分支夹角大于女性,血管平均管径和血管平均弯曲度小于女性,差异均有统计学意义(均 P<0.05)。全身因素多元线性回归分析结果显示,患有心血管疾病的人群较无心血管疾病的人群血管平均管径增大1.142 μm( B=1.142, P=0.029,95% CI:0.116~2.167);血管平均弯曲度与高血压( B=3.053×10 -5P=0.002,95% CI:1.167×10 -5~4.934×10 -5)和饮酒量( B=1.036×10 -5P=0.014,95% CI:0.211×10 -5~1.860×10 -5)呈正相关,与高脂血症呈负相关( B=-2.422×10 -5P=0.015,95% CI:-4.382×10 -5~-0.462×10 -5)。眼部因素多元线性回归分析结果显示,眼轴长度每增加1 mm,血管分形维数减小0.004( B=-0.004, P<0.001,95% CI:-0.006~-0.002),血管平均管径减小0.266 μm( B=-0.266, P=0.037,95% CI:-0.516~-0.016),血管平均弯曲度减小-2.45×10 -5°( B=-2.45×10 -5P<0.001,95% CI:-0.313×10 -5~-0.177×10 -5)。BCVA每增加1.0,血管分支夹角增大3.992°( B=3.992, P=0.004,95% CI:1.283~6.702),血管分形维数增大0.090( B=0.090, P<0.001,95% CI:0.078~0.102),血管平均管径减小14.813 μm( B=-14.813, P<0.001,95% CI:-16.474~-13.153)。

结论成功构建视网膜血管分割模型。视网膜血管参数与性别、年龄、系统性疾病和眼部因素存在关联。

视网膜血管;眼底照相;形态学参数;人工智能
ABSTRACT

ObjectiveTo analyze retinal vascular parameters and distribution characteristics in Chinese population via the fully automated quantitative measurement of retinal vascular morphological parameters based on artificial intelligence technology.

MethodsA cross-sectional study was performed.A total of 1 842 patients without fundus diseases who visited Beijing Tongren Hospital from January 2011 to December 2021 were included.Standardized questionnaires, blood draws and ophthalmologic examinations of enrolled subjects were conducted.Color fundus photographs centered on the optic disk of one eye of patients were collected, and a deep learning-based semantic segmentation network ResNet101-Unet was used to construct a vascular segmentation model for fully automated quantitative measurement of retinal vascular parameters.The main measurement indexes included retinal vascular branching angle, vascular fractal dimension, average vascular caliber, and average vascular tortuosity.To compare different retinal parameters between sexes, the correlation between the above parameters and ocular factors such as best corrected visual acuity, intraocular pressure, and axial length, as well as systemic factors such as sex, age, hypertension, diabetes mellitus, and cardiovascular disease was analyzed.This study adhered to the Declaration of Helsinki.The study protocol was approved by the Ethics Committee of Beijing Tongren Hospital, Capital Medical University (No.20001220). Written informed consent was obtained from each subject.

ResultsThe model established in this study achieved an accuracy over 0.95 for both vascular and optic disk segmentation.The vascular branching angle, vascular fractal dimension, average vascular caliber, and average vascular tortuosity were (51.023±11.623)°, 1.573(1.542, 1.592), 64.124(60.814, 69.053)μm, (0.001 062±0.000 165)°, respectively.Compared with females, males had larger vascular branching angle, smaller average vascular caliber and smaller vascular tortuosity, and the differences were statistically significant (all at P<0.05). The average vascular caliber increased by 1.142 μm in people with cardiovascular disease compared to people without cardiovascular disease ( B=1.142, P=0.029, 95% CI: 0.116-2.167). The average vascular tortuosity was positively correlated with hypertension ( B=3.053×10 -5, P=0.002, 95% CI: 1.167×10 -5-4.934×10 -5) and alcohol consumption ( B=1.036×10 -5, P=0.014, 95% CI: 0.211×10 -5-1.860×10 -5) and negatively correlated with hyperlipidemia ( B=-2.422×10 -5, P=0.015, 95% CI: -4.382×10 -5-0.462×10 -5). For each 1-mm increase in axial length, there was a decrease of 0.004 in vessel fractal dimension ( B=-0.004, P<0.001, 95% CI: -0.006--0.002), a decrease of 0.266 μm in the average vessel caliber ( B=-0.266, P=0.037, 95% CI: -0.516--0.016), and a decrease of -2.45×10 -5° in the average vessel tortuosity ( B=-2.45×10 -5, P<0.001, 95% CI: -0.313×10 -5--0.177×10 -5). For each 1.0 increase in BCVA, there was an increase of 3.992° in the vascular branch angle ( B=3.992, P=0.004, 95% CI: 1.283-6.702), an increase of 0.090 in vascular fractal dimension ( B=0.090, P<0.001, 95% CI: 0.078-0.102) and a decrease of 14.813 μm in the average vascular diameter ( B=-14.813, P<0.001, 95% CI: -16.474--13.153).

ConclusionsA model for retinal vascular segmentation is successfully constructed.Retinal vessel parameters are associated with sex, age, systemic diseases, and ocular factors.

Retinal vessels;Fundus image;Morphological parameters;Artificial intelligence
Wei Wenbin, Email: mocdef.3ab61rtnibnewiew
引用本文

史绪晗,董力,邵蕾,等. 基于人工智能自动分析技术的视网膜血管形态参数测量及特征分析[J]. 中华实验眼科杂志,2024,42(01):38-46.

DOI:10.3760/cma.j.cn115989-20220715-00326

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
视网膜血管作为体内唯一可以非侵入方式观察的人体血管,对于全身血管系统的研究具有重要意义 [ 1 ]。近年来越来越多的研究表明,视网膜血管形态学参数,如视网膜血管管径、弯曲度、分支夹角、分形维数等的改变不仅受眼部因素影响,也与高血压、糖尿病、心血管疾病、脑卒中等全身疾病密切相关 [ 2 , 3 , 4 ],并可以作为高血压、糖尿病等疾病远期预后的预测指标 [ 1 , 5 , 6 ]。现有的视网膜血管形态学参数的检测方法主要为使用视网膜图像血管评估和测量平台软件进行半自动定量分析,如英国爱丁堡大学的VAMPIRE测量软件 [ 5 ]和新加坡国立眼科研究所的SIVA分析软件 [ 2 , 7 ]。半自动分析需要对眼底照片进行手动标注和校准,学习周期长,分析速度慢,难以进行大样本数据的测量分析。本研究提出了一种基于人工智能的全自动视网膜血管形态学参数分析方法,利用彩色眼底照相对视网膜血管分支夹角、分形维数、平均管径、血管平均弯曲度等指标进行全自动定量检测,描述各参数在我国北方人群中的分布特点,并分析相关影响因素。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
MacGillivray TJ Trucco E Cameron JR et al. Retinal imaging as a source of biomarkers for diagnosis,characterization and prognosis of chronic illness or long-term conditions[J/OL]Br J Radiol 201487(1040)∶20130832[2023-03-08]http://www.ncbi.nlm.nih.gov/pubmed/24936979. DOI: 10.1259/bjr.20130832 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Cheung CY Tay WT Mitchell P et al. Quantitative and qualitative retinal microvascular characteristics and blood pressure[J]J Hypertens 201129(7)∶13801391. DOI: 10.1097/HJH.0b013e328347266c .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Cheung CY Zheng Y Hsu W et al. Retinal vascular tortuosity,blood pressure,and cardiovascular risk factors[J]Ophthalmology 2011118(5)∶812818. DOI: 10.1016/j.ophtha.2010.08.045 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Hilal S Cheung CY Wong TY et al. Retinal parameters,cortical cerebral microinfarcts,and their interaction with cognitive impairment[J]Int J Stroke 202318(1)∶7077. DOI: 10.1177/17474930221097737 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Forster RB Garcia ES Sluiman AJ et al. Retinal venular tortuosity and fractal dimension predict incident retinopathy in adults with type 2 diabetes:the Edinburgh Type 2 Diabetes Study[J]Diabetologia 202164(5)∶11031112. DOI: 10.1007/s00125-021-05388-5 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Sandoval-Garcia E McLachlan S Price AH et al. Retinal arteriolar tortuosity and fractal d imension are associated with long-term cardiovascular outcomes in people with type 2 diabetes [J]Diabetologia 202164(10)∶22152227. DOI: 10.1007/s00125-021-05499-z .
返回引文位置Google Scholar
百度学术
万方数据
[7]
McGrory S Taylor AM Kirin M et al. Retinal microvascular network geometry and cognitive abilities in community-dwelling older people:the Lothian Birth Cohort 1936 study[J]Br J Ophthalmol 2017101(7)∶993998. DOI: 10.1136/bjophthalmol-2016-309017 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Liew G Wang JJ Cheung N et al. The retinal vasculature as a fractal:methodology,reliability,and relationship to blood pressure[J]Ophthalmology 2008115(11)∶19511956. DOI: 10.1016/j.ophtha.2008.05.029 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Vilela MA Amaral CE Ferreira M Retinal vascular tortuosity:mechanisms and measurements[J]Eur J Ophthalmol 202131(3)∶14971506. DOI: 10.1177/1120672120979907 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Shao L Zhang QL Long TF et al. Quantitative assessment of fundus tessellated density and associated factors in fundus images using artificial intelligence[J/OL]Transl Vis Sci Technol 202110(9)∶23[2023-03-08]http://www.ncbi.nlm.nih.gov/pubmed/34406340. DOI: 10.1167/tvst.10.9.23 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Xu Y Wang Y Liu B et al. The diagnostic accuracy of an intelligent and automated fundus disease image assessment system with lesion quantitative function (SmartEye) in diabetic patients[J/OL]BMC Ophthalmol 201919(1)∶184[2023-03-08]http://www.ncbi.nlm.nih.gov/pubmed/31412800. DOI: 10.1186/s12886-019-1196-9 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Ronneberger O Fischer P Brox T U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. SpringerCham 2015234-241.
返回引文位置Google Scholar
百度学术
万方数据
[13]
柯鑫江威朱江兵基于视觉注意机制的眼底图像视盘快速定位与分割[J]科学技术与工程 201515(35)∶4753. DOI: 10.3969/j.issn.1671-1815.2015.35.009 .
返回引文位置Google Scholar
百度学术
万方数据
Ke X Jiang W Zhu JB . Fast location and segemention of optic disk in the fundus image based on visual attention[J]Sci Technol Eng 201515(35)∶4753. DOI: 10.3969/j.issn.1671-1815.2015.35.009 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[14]
Seidelmann SB Claggett B Bravo PE et al. Retinal vessel calibers in predicting long-term cardiovascular outcomes:the Atherosclerosis Risk in Communities Study [J]Circulation 2016134(18)∶13281338. DOI: 10.1161/CIRCULATIONAHA.116.023425 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Witt N Wong TY Hughes AD et al. Abnormalities of retinal microvascular structure and risk of mortality from ischemic heart disease and stroke[J]Hypertension 200647(5)∶975981. DOI: 10.1161/01.HYP.0000216717.72048.6c .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Ding J Wai KL McGeechan K et al. Retinal vascular caliber and the development of hypertension:a meta-analysis of individual participant data[J]J Hypertens 201432(2)∶207215. DOI: 10.1097/HJH.0b013e32836586f4 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Sasongko MB Wong TY Donaghue KC et al. Retinal arteriolar tortuosity is associated with retinopathy and early kidney dysfunction in type 1 diabetes[J]Am J Ophthalmol 2012153(1)∶176183. DOI: 10.1016/j.ajo.2011.06.005 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Owen CG Rudnicka AR Welikala RA et al. Retinal vasculometry associations with cardiometabolic risk factors in the European prospective investigation of Cancer-Norfolk Study[J]Ophthalmology 2019126(1)∶96106. DOI: 10.1016/j.ophtha.2018.07.022 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Chew SK Xie J Wang JJ . Retinal arteriolar diameter and the prevalence and incidence of hypertension:a systematic review and meta-analysis of their association[J]Curr Hypertens Rep 201214(2)∶144151. DOI: 10.1007/s11906-012-0252-0 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Ong YT De Silva DA Cheung CY et al. Microvascular structure and network in the retina of patients with ischemic stroke[J]Stroke 201344(8)∶21212127. DOI: 10.1161/STROKEAHA.113.001741 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Triantafyllou A Anyfanti P Gavriilaki E et al. Association between retinal vessel caliber and arterial stiffness in a population comprised of normotensive to early-stage hypertensive individuals[J]Am J Hypertens 201427(12)∶14721478. DOI: 10.1093/ajh/hpu074 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
INSPIRED project. On the quantitative effects of compression of retinal fundus images on morphometric vascular measurements in VAMPIRE[J/OL]Comput Methods Programs Biomed 2021202105969[2023-03-10]http://www.ncbi.nlm.nih.gov/pubmed/33631639. DOI: 10.1016/j.cmpb.2021.105969 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Sherry LM Wang JJ Rochtchina E et al. Reliability of computer-assisted retinal vessel measurementin a population[J]Clin Exp Ophthalmol 200230(3)∶179182. DOI: 10.1046/j.1442-9071.2002.00520.x .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Chen C Chuah JH Ali R et al. Retinal vessel segmentation using deep learning:a review[J/OL]IEEE Access 2021(9)∶111985112004[2023-03-10]https://ieeexplore.ieee.org/document/9504555. DOI: 10.1109/ACCESS.2021.3102176 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Tapp RJ Owen CG Barman SA et al. Associations of retinal m icrovascular diameters and tortuosity with blood pressure and arterial stiffness:United Kingdom Biobank [J]Hypertension 201974(6)∶13831390. DOI: 10.1161/HYPERTENSIONAHA.119.13752 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Kaushik S Kifley A Mitchell P et al. Age,blood pressure,and retinal vessel diameter:separate effects and interaction of blood pressure and age[J]Invest Ophthalmol Vis Sci 200748(2)∶557561. DOI: 10.1167/iovs.06-0893 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Gallo A Dietenbeck T Giron A et al. Non-invasive evaluation of retinal vascular remodeling and hypertrophy in humans:intricate effect of ageing,blood pressure and glycaemia[J]Clin Res Cardiol 2021110(7)∶959970. DOI: 10.1007/s00392-020-01680-3 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Song Y Cheng W Li F et al. Ocular factors of fractal dimension and blood vessel tortuosity derived from OCTA in a healthy Chinese population[J/OL]Transl Vis Sci Technol 202211(5)∶1[2023-03-12]http://www.ncbi.nlm.nih.gov/pubmed/35499823. DOI: 10.1167/tvst.11.5.1 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Tai EL Li LJ Wan-Hazabbah WH et al. Effect of axial eye length on retinal vessel parameters in 6 to 12-year-old Malay girls[J/OL]PLoS One 201712(1)∶e0170014[2023-03-12]http://www.ncbi.nlm.nih.gov/pubmed/28107389. DOI: 10.1371/journal.pone.0170014 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Li H Mitchell P Liew G et al. Lens opacity and refractive influences on the measurement of retinal vascular fractal dimension[J/OL]Acta Ophthalmol 201088(6)∶e234-e240[2023-03-12]http://www.ncbi.nlm.nih.gov/pubmed/20662797. DOI: 10.1111/j.1755-3768.2010.01975.x .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
魏文斌,Email: mocdef.3ab61rtnibnewiew
B

史绪晗:酝酿和设计试验、实施研究、采集数据、分析/解释数据、统计分析、起草文章;董力、邵蕾、凌赛广、董洲、牛莹、张瑞恒、周文达:实施研究、采集数据、统计分析;魏文斌:酝酿和设计试验、指导试验、统计分析、对文章的知识性内容作批评性审阅及定稿

C
所有作者均声明不存在利益冲突
D
国家自然科学基金 (82141128)
首都卫生发展科研专项 (2020-1-2052)
北京市科委科技计划项目 (Z201100005520045、Z181100001818003)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号