目的基于人工智能技术对视网膜血管形态学参数进行全自动定量测量,分析我国北方50岁以上人群视网膜血管参数及分布特征。
方法采用横断面研究方法,纳入2011年1月至2021年12月就诊于北京同仁医院的50岁以上无眼底病的患者1 842例,对纳入的受试者进行标准化问卷调查、抽血和眼科检查;收集各受试者任意一眼以视盘为中心的彩色眼底照片,采用基于深度学习的语义分割网络ResNet101-Unet构建血管分割模型,进行全自动视网膜血管参数定量测量,主要测量指标包括视网膜血管分支夹角、血管分形维数、血管平均管径和血管平均弯曲度。比较不同性别间各视网膜参数的差异。采用多元线性回归分析法分析最佳矫正视力、眼压、眼轴长度等眼部因素和性别、年龄、高血压、糖尿病、心血管疾病等全身因素是否是各视网膜血管参数的影响因素。
结果模型对于血管分割和视盘分割的准确度均高于0.95。1 842例受试者血管分支夹角为(51.023±11.623)°;血管分形维数为1.573(1.542,1.592);血管平均管径为64.124(60.814,69.053)μm;血管平均弯曲度为(0.001 062±0.000 165)°。男性血管分支夹角大于女性,血管平均管径和血管平均弯曲度小于女性,差异均有统计学意义(均 P<0.05)。全身因素多元线性回归分析结果显示,患有心血管疾病的人群较无心血管疾病的人群血管平均管径增大1.142 μm( B=1.142, P=0.029,95% CI:0.116~2.167);血管平均弯曲度与高血压( B=3.053×10 -5, P=0.002,95% CI:1.167×10 -5~4.934×10 -5)和饮酒量( B=1.036×10 -5, P=0.014,95% CI:0.211×10 -5~1.860×10 -5)呈正相关,与高脂血症呈负相关( B=-2.422×10 -5, P=0.015,95% CI:-4.382×10 -5~-0.462×10 -5)。眼部因素多元线性回归分析结果显示,眼轴长度每增加1 mm,血管分形维数减小0.004( B=-0.004, P<0.001,95% CI:-0.006~-0.002),血管平均管径减小0.266 μm( B=-0.266, P=0.037,95% CI:-0.516~-0.016),血管平均弯曲度减小-2.45×10 -5°( B=-2.45×10 -5, P<0.001,95% CI:-0.313×10 -5~-0.177×10 -5)。BCVA每增加1.0,血管分支夹角增大3.992°( B=3.992, P=0.004,95% CI:1.283~6.702),血管分形维数增大0.090( B=0.090, P<0.001,95% CI:0.078~0.102),血管平均管径减小14.813 μm( B=-14.813, P<0.001,95% CI:-16.474~-13.153)。
结论成功构建视网膜血管分割模型。视网膜血管参数与性别、年龄、系统性疾病和眼部因素存在关联。
ObjectiveTo analyze retinal vascular parameters and distribution characteristics in Chinese population via the fully automated quantitative measurement of retinal vascular morphological parameters based on artificial intelligence technology.
MethodsA cross-sectional study was performed.A total of 1 842 patients without fundus diseases who visited Beijing Tongren Hospital from January 2011 to December 2021 were included.Standardized questionnaires, blood draws and ophthalmologic examinations of enrolled subjects were conducted.Color fundus photographs centered on the optic disk of one eye of patients were collected, and a deep learning-based semantic segmentation network ResNet101-Unet was used to construct a vascular segmentation model for fully automated quantitative measurement of retinal vascular parameters.The main measurement indexes included retinal vascular branching angle, vascular fractal dimension, average vascular caliber, and average vascular tortuosity.To compare different retinal parameters between sexes, the correlation between the above parameters and ocular factors such as best corrected visual acuity, intraocular pressure, and axial length, as well as systemic factors such as sex, age, hypertension, diabetes mellitus, and cardiovascular disease was analyzed.This study adhered to the Declaration of Helsinki.The study protocol was approved by the Ethics Committee of Beijing Tongren Hospital, Capital Medical University (No.20001220). Written informed consent was obtained from each subject.
ResultsThe model established in this study achieved an accuracy over 0.95 for both vascular and optic disk segmentation.The vascular branching angle, vascular fractal dimension, average vascular caliber, and average vascular tortuosity were (51.023±11.623)°, 1.573(1.542, 1.592), 64.124(60.814, 69.053)μm, (0.001 062±0.000 165)°, respectively.Compared with females, males had larger vascular branching angle, smaller average vascular caliber and smaller vascular tortuosity, and the differences were statistically significant (all at P<0.05). The average vascular caliber increased by 1.142 μm in people with cardiovascular disease compared to people without cardiovascular disease ( B=1.142, P=0.029, 95% CI: 0.116-2.167). The average vascular tortuosity was positively correlated with hypertension ( B=3.053×10 -5, P=0.002, 95% CI: 1.167×10 -5-4.934×10 -5) and alcohol consumption ( B=1.036×10 -5, P=0.014, 95% CI: 0.211×10 -5-1.860×10 -5) and negatively correlated with hyperlipidemia ( B=-2.422×10 -5, P=0.015, 95% CI: -4.382×10 -5-0.462×10 -5). For each 1-mm increase in axial length, there was a decrease of 0.004 in vessel fractal dimension ( B=-0.004, P<0.001, 95% CI: -0.006--0.002), a decrease of 0.266 μm in the average vessel caliber ( B=-0.266, P=0.037, 95% CI: -0.516--0.016), and a decrease of -2.45×10 -5° in the average vessel tortuosity ( B=-2.45×10 -5, P<0.001, 95% CI: -0.313×10 -5--0.177×10 -5). For each 1.0 increase in BCVA, there was an increase of 3.992° in the vascular branch angle ( B=3.992, P=0.004, 95% CI: 1.283-6.702), an increase of 0.090 in vascular fractal dimension ( B=0.090, P<0.001, 95% CI: 0.078-0.102) and a decrease of 14.813 μm in the average vascular diameter ( B=-14.813, P<0.001, 95% CI: -16.474--13.153).
ConclusionsA model for retinal vascular segmentation is successfully constructed.Retinal vessel parameters are associated with sex, age, systemic diseases, and ocular factors.
史绪晗,董力,邵蕾,等. 基于人工智能自动分析技术的视网膜血管形态参数测量及特征分析[J]. 中华实验眼科杂志,2024,42(01):38-46.
DOI:10.3760/cma.j.cn115989-20220715-00326版权归中华医学会所有。
未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。
史绪晗:酝酿和设计试验、实施研究、采集数据、分析/解释数据、统计分析、起草文章;董力、邵蕾、凌赛广、董洲、牛莹、张瑞恒、周文达:实施研究、采集数据、统计分析;魏文斌:酝酿和设计试验、指导试验、统计分析、对文章的知识性内容作批评性审阅及定稿

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。