实验研究
ENGLISH ABSTRACT
COG1410对视网膜缺血-再灌注损伤小鼠视网膜神经节细胞的保护作用及其机制
赵茹
罗晋媛
贺涛
邢怡桥
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20221116-00534
Protective effect of COG1410 on the survival of retinal ganglion cells in mice with retinal ischemia-reperfusion injury and its mechanism
Zhao Ru
Luo Jinyuan
He Tao
Xing Yiqiao
Authors Info & Affiliations
Zhao Ru
Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
Luo Jinyuan
Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
He Tao
Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
Xing Yiqiao
Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
·
DOI: 10.3760/cma.j.cn115989-20221116-00534
344
70
0
0
0
0
PDF下载
APP内阅读
摘要

目的探索载脂蛋白E模拟肽COG1410对小鼠视网膜缺血-再灌注(IR)损伤后M1/M2小胶质细胞极化及视网膜神经节细胞(RGCs)存活的影响及其可能的机制。

方法将18只8周龄C57BL/6J雄性小鼠按照随机数字表法分为正常对照组6只、IR 3 d组6只、IR 7 d组3只和IR 14 d组3只,其中IR组小鼠使用生理盐水进行前房灌注,将眼压提高至100 mmHg(1 mmHg=0.133 kPa)并维持1 h,以建立视网膜IR损伤模型。取正常对照组和IR 3 d组各3只,采用视网膜冰冻切片免疫荧光染色法观察视网膜小胶质细胞的分布情况。取正常对照组、IR 3 d组、IR 7 d组和IR 14 d组各3只,通过视网膜铺片免疫荧光染色法观察视网膜M1型、M2型小胶质细胞随IR损伤后时间的变化。另取91只C57BL/6J小鼠按照随机数字表法随机分为正常对照组19只、IR组24只、生理盐水组24只、COG1410组24只,其中正常对照组小鼠维持正常眼压,其余3个组均建立IR损伤模型,且COG1410组和生理盐水组在造模后分别尾静脉注射1 mg/kg COG1410和等体积生理盐水。采用视网膜铺片免疫荧光染色法观察各组小胶质细胞表型及RGCs存活率;采用实时荧光定量PCR法检测各组视网膜肿瘤坏死因子α(TNF-α)、白细胞介素-1β(IL-1β)mRNA的相对表达量;采用TUNEL法观察视网膜神经细胞的凋亡情况;采用Western blot法检测各组视网膜核因子κB(NF-κB)、B淋巴细胞瘤2(Bcl-2)、Bcl-2关联X蛋白(Bax)蛋白的表达水平。

结果正常对照组与IR 3 d组视网膜小胶质细胞主要分布在神经节细胞层、内丛状层和外丛状层。正常对照组、IR 3 d组、IR 7 d组和IR 14 d组M1型、M2型小胶质细胞数目总体比较差异均有统计学意义( F=29.83、57.62;均 P<0.001);与正常对照组相比,IR 3 d组M1型小胶质细胞数量增多,IR 7 d组M2型小胶质细胞数量增多,差异均有统计学意义(均 P<0.05)。正常对照组、IR组、生理盐水组、COG1410组M1型小胶质细胞比例分别为(4.25±0.57)%、(65.26±10.43)%、(63.01±4.93)%和(33.13±4.46)%,M2型小胶质细胞的数目分别为(4.50±0.20)%、(11.47±0.24)%、(11.75±0.17)%和(38.93±4.26)%,总体比较差异均有统计学意义( F=23.33、50.82;均 P<0.05);与IR组比较,COG1410组M1型小胶质细胞数目减少而M2型小胶质细胞数目增多,差异均有统计学意义(均 P<0.05);各组RGCs存活率及视网膜TNF-α mRNA、IL-1β mRNA相对表达量、凋亡细胞数目、NF-κB和Bax蛋白表达水平、Bax/Bcl-2值总体比较差异均有统计学意义( F=30.77、12.52、6.74、28.72、13.02、7.94、7.58,均 P<0.05);与正常对照组比较,IR组RGCs存活率明显降低,视网膜凋亡细胞数增多,TNF-α和IL-1β mRNA表达量升高,视网膜NF-κB和Bax蛋白表达水平升高,Bax/Bcl-2比值升高,差异均有统计学意义(均 P<0.05);与IR组比较,COG1410组视网膜RGCs存活率升高,TNF-α和IL-1β mRNA表达量降低,TUNEL阳性细胞减少,NF-κB和Bax蛋白表达水平降低、Bax/Bcl-2比值降低,差异均有统计学意义(均 P<0.05)。

结论视网膜IR后3 d,COG1410促进M1型小胶质细胞向M2型极化,抑制视网膜NF-κB及下游炎症因子表达,减轻视网膜炎症反应,同时抑制凋亡相关蛋白的表达,从而促进RGCs存活。

视网膜;再灌注损伤;COG1410;小胶质细胞极化;青光眼;载脂蛋白E
ABSTRACT

ObjectiveTo explore the effects of apolipoprotein E-mimetic peptide COG1410 on M1/M2 microglia polarization and retinal ganglion cells (RGCs) survival after ischemia-reperfusion (IR) injury in the mouse retina and its possible mechanisms.

MethodsEighteen 8-week-old C57BL/6J male mice were divided into control group (6 mice), IR 3 days group (6 mice), IR 7 days group (3 mice), and IR 14 days group (3 mice) according to the randomized number table method.Mice in IR group were perfused in the anterior chamber using saline, and the intraocular pressure (IOP) was raised to 100 mmHg (1 mmHg=0.133 kPa) and maintained for 1 hour in order to establish a model of IR injury in the retina.Three mice from control group and 3 mice from IR 3 days group were taken to observe the distribution of retinal microglia by immunofluorescence staining of retinal frozen sections.Three mice were taken from normal control, IR 3 days, IR 7 days, and IR 14 days groups respectively to observe the changes of retinal M1-type and M2-type microglial cells with time after IR injury by immunofluorescence staining of retina.Another 91 C57BL/6J mice were randomly divided into normal control group (19 mice), IR group (24 mice), saline group (24 mice), and COG1410 group (24 mice) according to the random number table method.Mice in normal control group maintained a normal IOP, and the IR injury model was established in the other three groups.In addition, COG1410 group and saline group were injected with 1 mg/kg COG1410 and an equal volume of saline by tail vein injection, respectively.The microglia phenotype and survival rate of RGCs were observed by immunofluorescence staining of retinal wholemount.The relative expressions of retinal tumor necrosis factor-ɑ (TNF-ɑ) and interleukin-1β (IL-1β) mRNA were detected by real-time fluorescence quantitative PCR.The apoptosis of retinal neuronal cells was observed by the TUNEL assay.The expression levels of retinal nuclear factor-κB (NF-κB), B lymphocyte-2 (Bcl-2), and Bcl-2-associated X protein (Bax) proteins were detected by Western blot.Use and care of animals strictly complied with the Hubei Provincial Regulations on the Management of Laboratory Animals and the experiment was approved by the Animal Ethics Committee of the Renmin Hospital of Wuhan University (No.WDRM20190113).

ResultsRetinal microglia in normal control group and IR 3 days group were mainly distributed in the ganglion cell layer, inner plexiform layer, and outer plexiform layer.There were statistically significant differences in the comparison of the proportions of M1-type and M2-type microglia among normal control, IR 3 days, IR 7 days, and IR 14 days groups ( F=29.83, 57.62; both at P<0.001). Compared with normal control group, the number of M1-type microglia was higher in IR 3 days group, and the number of M2-type microglia was higher in IR 7 days group, and the differences were statistically significant (all at P<0.05). The proportions of M1-type microglia in normal control group, IR group, saline group, and COG1410 group were (4.25±0.57)%, (65.26±10.43)%, (63.01±4.93)%, and (33.13±4.46%), respectively, and the proportions of M2-type microglia in the four groups were (4.50±0.20)%, (11.47±0.24 )%, (11.75±0.17)%, and (38.93±4.26)%, showing statistically significant differences among them ( F=23.33, 50.82; both at P<0.001). The proportions of M1-type microglia decreased while the proportions of M2-type microglia increased in COG1410 group when compared with IR group, and the differences were statistically significant (both at P<0.05). There were statistically significant differences in RGCs survival rate, relative expression of retinal TNF-ɑ and IL-1β mRNA, retinal apoptotic cell count, retinal NF-κB and Bax protein expression levels, and Bax/Bcl-2 ratio among the four groups ( F=30.77, 12.52, 6.74, 28.72, 13.02, 7.94, 7.58; all at P<0.05). Compared with normal control group, there were significant decreases in the survival rate of RGCs and increases in retinal apoptotic cell number, TNF-ɑ and IL-1β mRNA expression, retinal NF-κB and Bax protein expression levels, and Bax/Bcl-2 ratio in IR group (all at P<0.05). Compared with IR group, the COG1410 group had increased retinal RGCs survival rate, decreased TNF-ɑ and IL-1β mRNA expression levels, decreased TUNEL-positive cells, decreased NF-κB and Bax proteins expression levels, and decreased Bax/Bcl2 ratio, and the differences were statistically significant (all at P<0.05).

ConclusionsThree days after retinal IR modeling, COG1410 promotes the polarization of M1-type microglia to M2-type, inhibits the expression of retinal NF-κB and downstream inflammatory factors, and attenuates the retinal inflammatory response, as well as inhibits the expression of apoptosis-related proteins, which promotes the survival of RGCs.

Retina;Reperfusion injury;COG1410;Microglial polarization;Glaucoma;Apolipoprotein E
Xing Yiqiao, Email: nc.defudabe.uhw75gnix_oaiqiy
引用本文

赵茹,罗晋媛,贺涛,等. COG1410对视网膜缺血-再灌注损伤小鼠视网膜神经节细胞的保护作用及其机制[J]. 中华实验眼科杂志,2023,41(11):1065-1075.

DOI:10.3760/cma.j.cn115989-20221116-00534

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
青光眼是世界范围内导致视力不可逆丧失的重要原因,以视神经的进行性退化和视网膜神经节细胞(retinal ganglion cells,RGCs)的不可逆丧失为特征 [ 1 ]。降低眼压是目前青光眼唯一的有效治疗手段,然而部分患者在眼压控制正常的情况下,病程仍在进展 [ 2 ]。有研究表明,在遗传性青光眼动物模型视神经损伤前就可在视神经中检测到促炎性单核细胞 [ 3 , 4 ]。除此之外,在一过性高眼压动物模型中,视网膜小胶质细胞与星形胶质细胞被大量激活 [ 4 ]。而抑制青光眼模型中胶质细胞的活化,可显著减少RGCs的死亡和轴突变性 [ 5 , 6 ]。因此,在青光眼疾病发展过程中,除高眼压对RGCs的机械性损伤外,神经炎症可能也是导致RGCs死亡的重要原因 [ 7 ]。小胶质细胞与星形胶质细胞是神经炎症相关的主要效应细胞,是视网膜常驻免疫细胞,共同维持视网膜微环境的稳定,其中小胶质细胞在神经炎症中发挥着核心作用 [ 8 ]。根据小胶质细胞功能,可将其分为经典激活型(M1型)和交替激活型(M2型);M1型小胶质细胞被认为具有破坏性,释放炎症因子和活性氧,加剧组织损伤,而M2型小胶质细胞被认为具有保护性,吞噬组织碎片,促进组织修复 [ 9 ]。促进M1型小胶质细胞向M2型极化能最大程度上减轻神经毒性,促进组织恢复。载脂蛋白E(apolipoprotein E,APOE)是中枢神经系统合成的主要载脂蛋白,对维持中枢神经系统的脂质稳态发挥重要作用,与神经炎症等密切相关 [ 10 , 11 ]。COG1410是一种APOE受体结合域的模拟短肽,因其具有与APOE全蛋白相同的受体结合能力并且可自由透过血-脑屏障,而被用于神经系统的治疗研究,是一种具有转化应用前景的中枢神经保护剂 [ 12 , 13 , 14 , 15 , 16 ]。目前尚未发现有研究探索COG1410在青光眼中的作用。本研究拟通过构建视网膜缺血-再灌注(ischemia-reperfusion,IR)模型,探讨COG1410对视网膜小胶质细胞极化及RGCs存活的作用及其机制,以期为青光眼治疗提供新的思路。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Quigley HA Dunkelberger GR Green WR . Chronic human glaucoma causing selectively greater loss of large optic nerve fibers[J]Ophthalmology 198895(3)∶357363. DOI: 10.1016/s0161-6420(88)33176-3 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Tomita G The optic nerve head in normal-tension glaucoma[J]Curr Opin Ophthalmol 200011(2)∶116120. DOI: 10.1097/00055735-200004000-00009 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Howell GR Soto I Zhu X et al. Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma[J]J Clin Invest 2012122(4)∶12461261. DOI: 10.1172/JCI61135 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Silverman SM Kim BJ Howell GR et al. C1q propagates microglial activation and neurodegeneration in the visual axis following retinal ischemia/reperfusion injury[J/OL]Mol Neurodegener 20161124[2023-01-10]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806521/. DOI: 10.1186/s13024-016-0089-0 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Krishnan A Kocab AJ Zacks DN et al. A small peptide antagonist of the Fas receptor inhibits neuroinflammation and prevents axon degeneration and retinal ganglion cell death in an inducible mouse model of glaucoma[J/OL]J Neuroinflammation 201916(1)∶184[2023-01-10]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767653/. DOI: 10.1186/s12974-019-1576-3 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Bosco A Inman DM Steele MR et al. Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma[J]Invest Ophthalmol Vis Sci 200849(4)∶14371446. DOI: 10.1167/iovs.07-1337 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
McMonnies C Reactive oxygen species,oxidative stress,glaucoma and hyperbaric oxygen therapy[J]J Optom 201811(1)∶39. DOI: 10.1016/j.optom.2017.06.002 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Williams PA Marsh-Armstrong N Howell GR . Neuroinflammation in glaucoma:a new opportunity[J]Exp Eye Res 20171572027. DOI: 10.1016/j.exer.2017.02.014 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Stuckey SM Ong LK Collins-Praino LE et al. Neuroinflammation as a key driver of secondary neurodegeneration following stroke?[J]Int J Mol Sci 202122(23)∶13101[2023-01-13]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658328/. DOI: 10.3390/ijms222313101 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Rebeck GW . The role of APOE on lipid homeostasis and inflammation in normal brains[J]J Lipid Res 201758(8)∶14931499. DOI: 10.1194/jlr.R075408 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Lanfranco MF Ng CA Rebeck GW . ApoE lipidation as a therapeutic target in Alzheimer's disease[J/OL]Int J Mol Sci 202021(17)∶6336[2023-01-13]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503657/. DOI: 10.3390/ijms21176336 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Ahmed S Pande AH Sharma SS . Therapeutic potential of ApoE-mimetic peptides in CNS disorders:current perspective[J]Exp Neurol 2022353114051. DOI: 10.1016/j.expneurol.2022.114051 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Chen S Peng J Sherchan P et al. TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice[J/OL]J Neuroinflammation 202017(1)∶168[2023-01-13]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7257134/. DOI: 10.1186/s12974-020-01853-x .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Hoane MR Kaufman N Vitek MP et al. COG1410 improves cognitive performance and reduces cortical neuronal loss in the traumatically injured brain[J]J Neurotrauma 200926(1)∶121129. DOI: 10.1089/neu.2008.0565 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Kuai L Peng J Jiang Y et al. Apolipoprotein E-mimetic peptide COG1410 enhances retinal ganglion cell survival by attenuating inflammation and apoptosis following TONI[J/OL]Front Neurosci 201913980[2023-01-16]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755331/. DOI: 10.3389/fnins.2019.00980 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
James ML Sullivan PM Lascola CD et al. Pharmacogenomic effects of apolipoprotein E on intracerebral hemorrhage[J]Stroke 200940(2)∶632639. DOI: 10.1161/STROKEAHA.108.530402 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Luo J He T Yang J et al. SIRT1 is required for the neuroprotection of resveratrol on retinal ganglion cells after retinal ischemia-reperfusion injury in mice[J]Graefes Arch Clin Exp Ophthalmol 2020258(2)∶335344. DOI: 10.1007/s00417-019-04580-z .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Li Z Xie F Yang N et al. Krüppel-like factor 7 protects retinal ganglion cells and promotes functional preservation via activating the Akt pathway after retinal ischemia-reperfusion injury[J/OL]Exp Eye Res 2021207108587[2023-01-16]https://pubmed.ncbi.nlm.nih.gov/33891954/. DOI: 10.1016/j.exer.2021.108587 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Pocivavsek A Burns MP Rebeck GW . Low-density lipoprotein receptors regulate microglial inflammation through c-Jun N-terminal kinase[J]Glia 200957(4)∶444453. DOI: 10.1002/glia.20772 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Li X Peng J Pang J et al. Apolipoprotein E-mimetic peptide COG1410 promotes autophagy by phosphorylating GSK-3β in early brain injury following experimental subarachnoid hemorrhage[J/OL]Front Neurosci 201812127[2023-01-16]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844970/. DOI: 10.3389/fnins.2018.00127 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Liebner S Dijkhuizen RM Reiss Y et al. Functional morphology of the blood-brain barrier in health and disease[J]Acta Neuropathol 2018135(3)∶311336. DOI: 10.1007/s00401-018-1815-1 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Díaz-Coránguez M Ramos C Antonetti DA . The inner blood-retinal barrier:cellular basis and development[J]Vision Res 2017139123137. DOI: 10.1016/j.visres.2017.05.009 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Minhas G Sharma J Khan N Cellular stress response and immune signaling in retinal ischemia-reperfusion injury[J/OL]Front Immunol 20167444[2023-01-16]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075763/. DOI: 10.3389/fimmu.2016.00444 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Tschoe C Bushnell CD Duncan PW et al. Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets[J]J Stroke 202022(1)∶2946. DOI: 10.5853/jos.2019.02236 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Kisucká A Bimbová K Bačová M et al. Activation of neuroprotective microglia and astrocytes at the lesion site and in the adjacent segments is crucial for spontaneous locomotor recovery after spinal cord injury[J/OL]Cells 202110(8)∶1943[2023-01-20]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394075/. DOI: 10.3390/cells10081943 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Wagner N Reinehr S Palmhof M et al. Microglia activation in retinal ischemia triggers cytokine and toll-like receptor response[J]J Mol Neurosci 202171(3)∶527544. DOI: 10.1007/s12031-020-01674-w .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Oeckinghaus A Ghosh S The NF-kappaB family of transcription factors and its regulation[J/OL]Cold Spring Harb Perspect Biol 20091(4)∶a000034[2023-01-20]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773619/. DOI: 10.1101/cshperspect.a000034 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Zhang T Ma C Zhang Z et al. NF-κB signaling in inflammation and cancer[J]MedComm (2020) 20212(4)∶618653. DOI: 10.1002/mco2.104 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Zhang ZL Liu YG Huang QB et al. Nuclear factor-κB activation in perihematomal brain tissue correlates with outcome in patients with intracerebral hemorrhage[J/OL]J Neuroinflammation 20151253[2023-01-20]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365516/. DOI: 10.1186/s12974-015-0277-9 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Taetzsch T Levesque S McGraw C et al. Redox regulation of NF-κB p50 and M1 polarization in microglia[J]Glia 201563(3)∶423440. DOI: 10.1002/glia.22762 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Sanes JR Masland RH . The types of retinal ganglion cells:current status and implications for neuronal classification[J]Annu Rev Neurosci 201538221246. DOI: 10.1146/annurev-neuro-071714-034120 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Yu DY Cringle SJ Balaratnasingam C et al. Retinal ganglion cells:energetics,compartmentation,axonal transport,cytoskeletons and vulnerability[J]Prog Retin Eye Res 201336217246. DOI: 10.1016/j.preteyeres.2013.07.001 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Baudouin C Kolko M Melik-Parsadaniantz S et al. Inflammation in glaucoma:from the back to the front of the eye,and beyond[J/OL]Prog Retin Eye Res 202183100916[2023-01-20]https://pubmed.ncbi.nlm.nih.gov/33075485/. DOI: 10.1016/j.preteyeres.2020.100916 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Kale J Osterlund EJ Andrews DW . BCL-2 family proteins:changing partners in the dance towards death[J]Cell Death Differ 201825(1)∶6580. DOI: 10.1038/cdd.2017.186 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Renault TT Manon S Bax:Addressed to kill[J]Biochimie 201193(9)∶13791391. DOI: 10.1016/j.biochi.2011.05.013 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
邢怡桥,Email: nc.defudabe.uhw75gnix_oaiqiy
B

赵茹:酝酿和设计实验、实施研究、采集数据、分析/解释数据、文章撰写;罗晋媛:实施研究、采集数据、分析/解释数据;贺涛:参与实验设计、论文指导;邢怡桥:实验设计、论文审阅及定稿

C
所有作者均声明不存在利益冲突
D
湖北省自然科学基金青年项目 (2021CFB109)
武汉大学自主科研项目(青年教师资助项目) (2042021kf0131)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号