实验研究
ENGLISH ABSTRACT
基于网络药理学和分子对接探究姜黄素治疗糖尿病视网膜病变的药效机制
杜媛媛
王熠昀
赵蓉
张积
季晓燕
陆佳羽
嵇芳芳
娄慧
江自远
黄江
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20220314-00105
Mechanism of curcumin in the treatment of diabetic retinopathy based on network pharmacology and molecular docking
Du Yuanyuan
Wang Yiyun
Zhao Rong
Zhang Ji
Ji Xiaoyan
Lu Jiayu
Ji Fangfang
Lou Hui
Jiang Ziyuan
Huang Jiang
Authors Info & Affiliations
Du Yuanyuan
Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
Wang Yiyun
Suzhou Medical College of Soochow University, Suzhou 215123, China
Zhao Rong
Suzhou Medical College of Soochow University, Suzhou 215123, China
Zhang Ji
Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
Ji Xiaoyan
Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
Lu Jiayu
Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
Ji Fangfang
Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
Lou Hui
Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
Jiang Ziyuan
Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
Huang Jiang
Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
·
DOI: 10.3760/cma.j.cn115989-20220314-00105
682
148
0
1
2
0
PDF下载
APP内阅读
摘要

目的应用网络药理学及分子对接的相关理论方法探究姜黄素治疗糖尿病视网膜病变(DR)的作用机制。

方法利用SEA及SwissTargetPrediction数据库在线预测化合物作用的靶点;通过CTD数据库提供与疾病相关的各种靶点;运用Venny数据库映射匹配不同基因,并取二者交集;采用GeneMANIA数据库构造出交集基因的蛋白互作网络图,采用Cystoscape软件进行更精确的分析和可视化,借助WebGestalt数据库进行富集分析,最后利用AutoDock Vina对核心靶点进行分子对接。

结果得到姜黄素作用靶点52个,DR对应的靶点1 599个,共同作用的靶点48个。核心靶点为丝氨酸/苏氨酸-蛋白激酶1(AKT1)、肿瘤坏死因子α(TNF-α)、表皮生长因子受体(EGFR)、信号转导及转录激活因子3(STAT3)以及热休克蛋白90α家族A类成员1(HSP90AA1)。富集分析结果显示,这些靶点主要与EGFR酪氨酸激酶抑制剂耐药性信号通路、缺氧诱导因子1(HIF-1)信号通路、白细胞介素-17(IL-17)信号通路以及晚期糖基化终末产物-晚期糖基化终末产物受体(AGE-RAGE)信号通路等有关。

结论姜黄素可能通过调控多条信号通路来抑制炎症反应和对抗氧化应激等过程,从而发挥治疗DR的作用。

姜黄素;糖尿病视网膜病变;网络药理学;基因
ABSTRACT

ObjectiveTo investigate the mechanism of curcumin in the treatment of diabetic retinopathy (DR) by network pharmacology and molecular docking.

MethodsThe compounds targets of curcumin were predicted by SEA and SwissTargetPrediction databases, and the DR target genes were obtained by CTD database.The different genes were mapped and matched by Venny database to screen their intersections.The intersecting genes were submitted to GeneMANIA database to construct a protein-protein interaction network.WebGestalt database was used to conduct enrichment analysis and AutoDock Vina was used to perform molecular docking of the core targets.

ResultsA total of 52 targets of curcumin, 1 599 targets of DR and 48 intersecting targets were detected.The core targets were serine/threonine-protein kinase 1 (AKT1), tumor necrosis factor-α (TNF-α), epidermal growth factor receptor (EGFR), signal transduction and activator of transcription 3 (STAT3) and heat shock protein 90 alpha family class A member 1 (HSP90AA1). Enrichment analysis suggested that these targets were mainly associated with signaling pathways, including the EGFR tyrosine kinase inhibitor resistance signaling pathway, hypoxia-inducible factor-1 (HIF-1) signaling pathway, interleukin (IL)-17 signaling pathway and advanced glycosylation end product-the receptor of advanced glycosylation end product (AGE-RAGE) signaling pathway.

ConclusionsCurcumin may play an important role in the treatment of DR by regulating multiple signaling pathways to inhibit the inflammatory response and combat oxidative stress.

Curcumin;Diabetic retinopathy;Network pharmacology;Genes
Huang Jiang, Email: mocdef.3ab61revirgnaijgnauh
引用本文

杜媛媛,王熠昀,赵蓉,等. 基于网络药理学和分子对接探究姜黄素治疗糖尿病视网膜病变的药效机制[J]. 中华实验眼科杂志,2023,41(12):1152-1159.

DOI:10.3760/cma.j.cn115989-20220314-00105

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
研究表明,糖尿病视网膜病变(diabetic retinopathy,DR)是一种慢性炎症性疾病,主要表现为炎症因子的活化表达增加、视网膜血管内皮细胞(retinal vascular endothelial cell,RVEC)紧密连接消失、周细胞凋亡及毛细血管基底膜增厚,导致血管通透性增加、血-视网膜屏障功能受损,引起新生血管生成、视网膜出血及牵拉性脱离,最终造成患者视功能损害 [ 1 , 2 ]。寻找合适的药物对早期DR进行干预是临床研究的热点之一。研究发现,姜黄素可通过抗氧化和抗炎作用来改变胰岛素敏感性以及葡萄糖耐受性,抑制高糖环境下RVEC中活性氧的产生,在预防以及治疗DR中具有良好的药理作用 [ 3 , 4 , 5 , 6 , 7 , 8 ];其还能够显著减轻糖尿病大鼠视网膜组织水肿,抑制光感受器细胞凋亡和视网膜组织损伤,改善糖尿病引发的视网膜超微结构改变 [ 9 , 10 ]。临床研究发现,姜黄素干预后,不仅能降低血糖异常者的空腹血糖水平,而且能延缓DR的病理进展,甚至可以减轻黄斑水肿 [ 11 , 12 , 13 , 14 ]。目前,关于姜黄素治疗DR的分子机制仍不完全明确。网络药理学以系统生物学以及生物信息学为基础,通过分析药物成分、蛋白以及基因的关系网络,筛选出特定信号靶点进行药物分子设计以及药效学研究 [ 15 ]。分子对接技术是将药效成分分子与其作用靶点进行对接,预测分子间结合方式和结合力强弱的过程。本研究拟借助网络药理学及分子对接技术探讨姜黄素在治疗DR中的潜在作用靶点,为进一步分析其药效机制提供新的思路。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
李秀刘畅炎症在糖尿病视网膜病变中的作用[J]国际眼科杂志 202121(8)∶13681372. DOI: 10.3980/j.issn.1672-5123.2021.8.11 .
返回引文位置Google Scholar
百度学术
万方数据
Li X Liu C The role of retinal microglia in diabetic retinopathy[J]Int Eye Sci 202121(8)∶13681372. DOI: 10.3980/j.issn.1672-5123.2021.8.11 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[2]
刘巨平李筱荣糖尿病视网膜病变:一种非可控性炎症[J]中华实验眼科杂志 201432(1)∶9496. DOI: 10.3760/cma.j.issn.2095-0160.2014.01.019 .
返回引文位置Google Scholar
百度学术
万方数据
Liu JP Li XR . Diabetic retinopathy:a nonresolving inflammation[J]Chin J Exp Ophthalmol 201432(1)∶9496. DOI: 10.3760/cma.j.issn.2095-0160.2014.01.019 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[3]
沈先月李阳张卓姜黄素治疗骨关节炎的研究进展[J]中华外科杂志 202159(6)∶554557. DOI: 10.3760/cma.j.cn112139-20210127-00055 .
返回引文位置Google Scholar
百度学术
万方数据
Shen XY Li Y Zhang Z Research progress of curcumin in the treatment of osteoarthritis[J]Chin J Surg 202159(6)∶554557. DOI: 10.3760/cma.j.cn112139-20210127-00055 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[4]
Yang J Miao X Yang FJ et al. Therapeutic potential of curcumin in diabetic retinopathy (review)[J/OL]Int J Mol Med 202147(5)∶75[2023-06-10]https://pubmed.ncbi.nlm.nih.gov/33693955/. DOI: 10.3892/ijmm.2021.4908 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Mirzaei H Shakeri A Rashidi B et al. Phytosomal curcumin:a review of pharmacokinetic,experimental and clinical studies[J]Biomed Pharmacother 201785102112. DOI: 10.1016/j.biopha.2016.11.098 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Bateni Z Rahimi HR Hedayati M et al. The effects of nano-curcumin supplementation on glycemic control,blood pressure,lipid profile,and insulin resistance in patients with the metabolic syndrome:a randomized,double-blind clinical trial[J]Phytother Res 202135(7)∶39453953. DOI: 10.1002/ptr.7109 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
刘丽娅马景学刘丹岩姜黄素对IL-1β诱导的兔RPE细胞中核因子-κB相关炎性因子表达的抑制作用[J]中华实验眼科杂志 201634(9)∶804812. DOI: 10.3760/cma.j.issn.2095-0160.2016.09.008 .
返回引文位置Google Scholar
百度学术
万方数据
Liu LY Ma JX Liu DY et al. Inhibition of curcumin on the expression of IL-1β-induced nuclear factor-κB-dependent inflammatory gene in rabbit RPE cells[J]Chin J Exp Ophthalmol 201634(9)∶804812. DOI: 10.3760/cma.j.issn.2095-0160.2016.09.008 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[8]
黄江李翊肖建江姜黄素对高糖诱导的大鼠视网膜血管内皮细胞凋亡的影响[J]中华眼底病杂志 201733(5)∶513517. DOI: 10.3760/cma.j.issn.1005-1015.2017.05.017 .
返回引文位置Google Scholar
百度学术
万方数据
Huang J Li Y Xiao JJ et al. The effects of curcumin on the cellular apoptosis induced by high glucose in rat retinal vascular endothelial cells[J]Chin J Ocul Fundus Dis 201733(5)∶513517. DOI: 10.3760/cma.j.issn.1005-1015.2017.05.017 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[9]
Yang F Yu J Ke F et al. Curcumin alleviates diabetic retinopathy in experimental diabetic rats[J]Ophthalmic Res 201860(1)∶4354. DOI: 10.1159/000486574 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Xie T Chen X Chen W et al. Curcumin is a potential adjuvant to alleviates diabetic retinal injury via reducing oxidative stress and maintaining Nrf2 pathway homeostasis[J/OL]Front Pharmacol 202112796565[2023-06-10]https://pubmed.ncbi.nlm.nih.gov/34955862/. DOI: 10.3389/fphar.2021.796565 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
杨敏翟光喜姜黄素对糖尿病及其并发症的作用及机制研究进展[J]中国新药与临床杂志 201938(2)∶6570. DOI: 10.14109/j.cnki.xyylc.2019.02.001 .
返回引文位置Google Scholar
百度学术
万方数据
Yang M Zhai GX . Advances in research on effects and mechanisms of curcumin on diabetes and related complications[J]Chin J New Drugs Clin Remed 201938(2)∶6570. DOI: 10.14109/j.cnki.xyylc.2019.02.001 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[12]
Mazzolani F Togni S Giacomelli L et al. Oral administration of a curcumin-phospholipid formulation (Meriva ®) for treatment of chronic diabetic macular edema:a pilot study [J]Eur Rev Med Pharmacol Sci 201822(11)∶36173625. DOI: 10.26355/eurrev_201806_15189 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Oliveira S Monteiro-Alfredo T Silva S et al. Curcumin derivatives for type 2 diabetes management and prevention of complications[J]Arch Pharm Res 202043(6)∶567581. DOI: 10.1007/s12272-020-01240-3 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Kao YW Hsu SK Chen JY et al. Curcumin metabolite tetrahydrocurcumin in the treatment of eye diseases[J/OL]Int J Mol Sci 202022(1)∶212[2023-06-11]https://pubmed.ncbi.nlm.nih.gov/33379248/. DOI: 10.3390/ijms22010212 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Nogales C Mamdouh ZM List M et al. Network pharmacology:curing causal mechanisms instead of treating symptoms[J]Trends Pharmacol Sci 202243(2)∶136150. DOI: 10.1016/j.tips.2021.11.004 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Wang Y Bryant SH Cheng T et al. PubChem BioAssay:2017 update[J]Nucleic Acids Res 201745(D1)∶D955D963. DOI: 10.1093/nar/gkw1118 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Gu S Lai LH . Associating 197 Chinese herbal medicine with drug targets and diseases using the similarity ensemble approach[J]Acta Pharmacol Sin 202041(3)∶432438. DOI: 10.1038/s41401-019-0306-9 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Daina A Michielin O Zoete V SwissTargetPrediction:updated data and new features for efficient prediction of protein targets of small molecules[J/OL]Nucleic Acids Res 201947(W1)∶W357W364[2023-06-11]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC66024861/. DOI: 10.1093/nar/gkz382 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
闫小妮田国祥贺海蓉CTD数据库架构及数据获取查询与提取方法[J]中国循证心血管医学杂志 201911(8)∶905909. DOI: 10.3969/j.issn.1674-4055.2019.08.03 .
返回引文位置Google Scholar
百度学术
万方数据
Yan XN Tian GX He HR et al. CTD database architecture and data acquisition query and extraction method[J]Chin J Evid Based Cardiovasc Med 201911(8)∶905909. DOI: 10.3969/j.issn.1674-4055.2019.08.03 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[20]
Franz M Rodriguez H Lopes C et al. GeneMANIA update 2018[J/OL]Nucleic Acids Res 201846(W1)∶W60W64[2023-06-12]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030815/. DOI: 10.1093/nar/gky311 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Liao Y Wang J Jaehnig EJ et al. WebGestalt 2019:gene set analysis toolkit with revamped UIs and APIs[J/OL]Nucleic Acids Res 201947(W1)∶W199W205[2023-06-10]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602449/. DOI: 10.1093/nar/gkz401 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Inoue K Araki H Miura F et al. Transcriptome dynamics during cholesterol-induced transdifferentiation of human coronary artery smooth muscle cells:a Gene Ontology-centric clustering approach[J/OL]Biochem Biophys Rep 202127101061[2023-06-12]https://pubmed.ncbi.nlm.nih.gov/34258396/. DOI: 10.1016/j.bbrep.2021.101061 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Horinaka A Kim YH Kimura A et al. Changes in the predicted function of the rumen bacterial community of Japanese Black beef cattle during the fattening stages according to Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses[J]J Vet Med Sci 202183(7)∶10981106. DOI: 10.1292/jvms.21-0121 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
史少阳宋海珊包娟姜黄素在眼底视网膜及视神经病变中的研究进展[J]医学综述 202026(20)∶41214126. DOI: 10.3969/j.issn.1006-2084.2020.20.032 .
返回引文位置Google Scholar
百度学术
万方数据
Shi SY Song HS Bao J Research progress in curcumin and fundus retinopathy and optic neuropathy[J]Med Recapitul 202026(20)∶41214126. DOI: 10.3969/j.issn.1006-2084.2020.20.032 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[25]
Ju HB Zhang FX Wang S et al. Effects of fenofibrate on inflammatory cytokines in diabetic retinopathy patients[J/OL]Medicine (Baltimore) 201796(31)∶e7671[2023-06-12]https://pubmed.ncbi.nlm.nih.gov/28767589/. DOI: 10.1097/MD.0000000000007671 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
王静公慧敏梁玲新型炎症因子IL-17表达水平与糖尿病视网膜病变的相关性[J]中华眼视光学与视觉科学杂志 201719(7)∶428432. DOI: 10.3760/cma.j.issn.1674-845X.2017.07.008 .
返回引文位置Google Scholar
百度学术
万方数据
Wang J Gong HM Liang L Correlation analysis of new inflammatory factor interleukin-17 with diabetic retinopathy[J]Chin J Optom Ophthalmol Vis Sci 201719(7)∶428432. DOI: 10.3760/cma.j.issn.1674-845X.2017.07.008 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[27]
张海江梁亮姜黄素对视网膜缺血再灌注损伤大鼠视网膜组织结构及IL-23和IL-17表达的影响[J]国际眼科杂志 201717(8)∶14231426. DOI: 10.3980/j.issn.1672-5123.2017.8.08 .
返回引文位置Google Scholar
百度学术
万方数据
Zhang HJ Liang L Effects of curcumin on structure and the expression of interleukin-23 and interleukin-17 in rat retinal ischemia-reperfusion injury[J]Int Eye Sci 201717(8)∶14231426. DOI: 10.3980/j.issn.1672-5123.2017.8.08 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[28]
蔡晖石华宗杨豫湘过表达低氧诱导因子-1α(HIF-1α)对体外培养人视网膜血管内皮细胞增殖、炎症反应及血管生成的影响[J]眼科新进展 201939(1)∶3235. DOI: 10.13389/j.cnki.rao.2019.007 .
返回引文位置Google Scholar
百度学术
万方数据
Cai H Shi HZ Yang YX . The effects of over-expression of hypoxia inducible factor-1α on cell proliferation,inflammatory response and angiogenesis in vitro cultured human retinal capil-lary endothelial cells [J]Rec Adv Ophthalmol 201939(1)∶3235. DOI: 10.13389/j.cnki.rao.2019.007 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[29]
田沫岳岩坤邓禹血糖控制不佳2型糖尿病视网膜病变患者外周血VEGF、HIF-1α和ET-1水平及其临床意义[J]中国现代医学杂志 202030(5)∶5459. DOI: 10.3969/j.issn.1005-8982.2020.05.010 .
返回引文位置Google Scholar
百度学术
万方数据
Tian M Yue YK Deng Y et al. Expression of VEGF,HIF-1α and ET-1 in peripheral blood of type 2 diabetic retinopathy patients with poorly controlled blood glucose[J]Chin J Mod Med 202030(5)∶5459. DOI: 10.3969/j.issn.1005-8982.2020.05.010 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[30]
陈水龄亢泽峰褚文丽姜黄素通过AKT/HIF-1α/VEGF信号通路在体外抑制脉络膜新生血管的机制[J]国际眼科杂志 202222(4)∶541548. DOI: 10.3980/j.issn.1672-5123.2022.4.03 .
返回引文位置Google Scholar
百度学术
万方数据
Chen SL Kang ZF Chu WL et al. Mechanism study of Curcumin on inhibiting experimental choroidal neovascularization in vitro by AKT/HIF-1α/VEGF pathway [J]Int Eye Sci 202222(4)∶541548. DOI: 10.3980/j.issn.1672-5123.2022.4.03 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[31]
Sahajpal NS Goel RK Chaubey A et al. Pathological perturbations in diabetic retinopathy:hyperglycemia,AGEs,oxidative stress and inflammatory pathways[J]Curr Protein Pept Sci 201920(1)∶92110. DOI: 10.2174/1389203719666180928123449 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
赵梦雅许迅伴脂代谢紊乱的糖尿病视网膜病变研究进展[J]中华实验眼科杂志 201735(7)∶655659. DOI: 10.3760/cma.j.issn.2095-0160.2017.07.017 .
返回引文位置Google Scholar
百度学术
万方数据
Zhao MY Xu X Research progress of diabetic retinopathy with dyslipidemia[J]Chin J Exp Ophthalmol 201735(7)∶655659. DOI: 10.3760/cma.j.issn.2095-0160.2017.07.017 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[33]
Ahmed O El-Bassossy HM Azhar AS et al. Interference with AGEs formation and AGEs-induced vascular injury mediates curcumin vascular protection in metabolic syndrome[J/OL]Sci Rep 202010(1)∶315[2023-06-15]https://pubmed.ncbi.nlm.nih.gov/31941978/. DOI: 10.1038/s41598-019-57268-z .
返回引文位置Google Scholar
百度学术
万方数据
[34]
郑子恢潘慧杰赵紫楠姜黄素治疗2型糖尿病并发症有效性的Meta分析[J]中国药学杂志 202156(6)∶489496. DOI: 10.11669/cpj.2021.06.010 .
返回引文位置Google Scholar
百度学术
万方数据
Zheng ZH Pan HJ Zhao ZN et al. Meta-analysis of efficacy of curcumin in the treatment of complications of type Ⅱ diabetes mellitus[J]Chin Pharm J 202156(6)∶489496. DOI: 10.11669/cpj.2021.06.010 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[35]
Ding X Tong C Chen R et al. Systematic molecular profiling of inhibitor response to the clinical missense mutations of ErbB family kinases in human gastric cancer[J/OL]J Mol Graph Model 20209107526[2023-06-15]https://pubmed.ncbi.nlm.nih.gov/31901678/. DOI: 10.1016/j.jmgm.2019.107526 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Volpe C Villar-Delfino PH Dos Anjos P et al. Cellular death,reactive oxygen species (ROS) and diabetic complications[J/OL]Cell Death Dis 20189(2)∶119[2023-06-16]https://pubmed.ncbi.nlm.nih.gov/29371661/. DOI: 10.1038/s41419-017-0135-z .
返回引文位置Google Scholar
百度学术
万方数据
[37]
陈洁刘一然姜黄素对2型糖尿病大鼠脂肪细胞葡萄糖转运及PI3K/Akt信号通路的影响[J]中国比较医学杂志 201929(5)∶9097. DOI: 10.3969/j.issn.1671-7856.2019.05.014 .
返回引文位置Google Scholar
百度学术
万方数据
Chen J Liu YR . Effect of curcumin on glucose transport and PI3K/Akt signaling pathway in adipocytes of type 2 diabetes mellitus rats[J]Chin J Comparat Med 201929(5)∶9097. DOI: 10.3969/j.issn.1671-7856.2019.05.014 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
备注信息
A
黄江,Email: mocdef.3ab61revirgnaijgnauh
B

杜媛媛:数据采集及分析、论文撰写及修改;王熠昀、赵蓉:数据采集及分析;张积、季晓燕、陆佳羽:数据整理及分析;嵇芳芳、娄慧、江自远:校对数据、文献整理;黄江:实验设计、研究指导及文章修改

C
所有作者均声明不存在任何利益冲突
D
江苏省中医药科技发展计划项目 (YB2020060)
放射医学与辐射防护国家重点实验室项目 (GZK1202141)
苏州市科技发展计划(医疗卫生科技创新)项目 (SKY2022157)
苏州大学附属第二医院博士、留学归国人员预研项目 (SDFEYBS1903)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号