讲座
ENGLISH ABSTRACT
基于眼前节照相的翼状胬肉人工智能辅助诊断研究进展和思考
米玛卓玛
陈亚萍
纪玉珂
陈楠
吴星阳
杨卫华
钱会
作者及单位信息
·
DOI: 10.3760/cma.j.cn101909-20230707-00013
Research progress and thinking on artificial intelligence assisted diagnosis of pterygium based on anterior segment photographs
Mikma Droma
Chen Yaping
Ji Yuke
Chen Nan
Wu Xingyang
Yang Weihua
Qian Hui
Authors Info & Affiliations
Mikma Droma
Department of Ophthalmology, Naqu People′s Hospital, Naqu 852000, China
Chen Yaping
Department of Ophthalmology, Naqu People′s Hospital, Naqu 852000, China
Ji Yuke
Department of Ophthalmology, Eye Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
Chen Nan
Department of Ophthalmology, Eye Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
Wu Xingyang
Big Data and AI Institute, Shenzhen Eye Hospital, Shenzhen 518040, China
Yang Weihua
Big Data and AI Institute, Shenzhen Eye Hospital, Shenzhen 518040, China
Qian Hui
Department of Ophthalmology, Eye Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
·
DOI: 10.3760/cma.j.cn101909-20230707-00013
1998
60
0
0
1
0
PDF下载
APP内阅读
摘要

翼状胬肉是一种常见眼表疾病,表现为纤维血管组织增殖和入侵。翼状胬肉在早期仅引起轻微的眼表不适,一旦累及角膜瞳孔区域,就会影响患者的视力。所以应尽早发现翼状胬肉,并采取相应措施控制其生长。多数患者无法辨别翼状胬肉的出现与发展,而目前的医疗资源尚无法满足完全依靠眼科医生来定期检查。基于机器学习技术,开发一种基于简单成像模式的翼状胬肉人工智能辅助诊断系统,可利于便捷检测翼状胬肉组织的存在并进行分类、分割。本文总结了人工智能在翼状胬肉诊断应用中的最新技术,旨在为人工智能翼状胬肉诊断应用的未来发展提供展望。

翼状胬肉;诊断;深度学习;机器学习;人工智能;眼前节照相
ABSTRACT

Pterygium is a common ocular surface disease in which fibrous vascular tissue multiplies and grows into the corneal area. In the early stage, there is no obvious effect on the patient other than minor ocular surface discomfort. Once the pterygium involves the corneal pupil area, it can affect the patient′s vision. Therefore, it is necessary to detect this condition as early as possible and take corresponding measures to control its growth. Most patients are unable to identify the occurrence and development of pterygium, and current medical resources cannot meet the requirements if regular examinations by ophthalmologist are solely relied upon. Therefore, it is necessary to develop a pterygium artificial intelligence assisted diagnosis system based on anterior segment photographs, so as to conveniently detect the existence of pterygium tissue and perform classification and segmentation. In this paper, the latest technologies of artificial intelligence in the diagnosis of pterygium are reviewed, aiming at providing prospects for the development of artificial intelligence in the diagnosis of pterygium.

Pterygium;Diagnosis;Deep learning;Machine learning;Artificial intelligence;Anterior segment photograph
Qian Hui, Email: mocdef.6ab21025781iuhnaiq
引用本文

米玛卓玛,陈亚萍,纪玉珂,等. 基于眼前节照相的翼状胬肉人工智能辅助诊断研究进展和思考[J]. 数字医学与健康,2023,01(02):115-120.

DOI:10.3760/cma.j.cn101909-20230707-00013

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
翼状胬肉是一种常见的眼表疾病,又称为胬肉攀睛,表现为局部纤维血管组织过度增殖,主要起源于内眦结膜的纤维血管组织区域 1。对于较为严重的翼状胬肉病例,胬肉可以生长在内眦部和外眦部两侧。翼状胬肉分两种类型:静止型和进展型。在进展型翼状胬肉中,翼状胬肉组织会不断地向角膜区域生长。最初,翼状胬肉异常组织只是涉及巩膜上方的结膜,一旦病情变得更严重,翼状胬肉就会累及角膜区域,进而阻止光线进入黄斑区域,导致视力下降。故早期翼状胬肉的筛查至关重要,可基于检查结果建议患者采取适当的预防措施,并使用简单的方法控制翼状胬肉的生长 2。本文将对翼状胬肉的基本情况及危险因素进行介绍,并对翼状胬肉的人工智能辅助诊断应用情况进行总结,对进一步提高人工智能在翼状胬肉诊断中的应用性能提出建议。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
江华维,刘霞,王艳,. 翼状胬肉发病机制的研究进展[J]. 昆明医科大学学报, 2023,44(1):144-150. DOI: 10.12259/j.issn.2095-610X.S20230125 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Zulkifley MA , Abdani SR , Zulkifley NH . Pterygium-Net: a deep learning approach to pterygium detection and localization[J]. Multimed Tools Appl, 2019,78(24):34563-34584. DOI: 10.1007/s11042-019-08130-x .
返回引文位置Google Scholar
百度学术
万方数据
[3]
雷迅文,章金枝,李强,. 眼科住院患者3277例流行病学特征分析[J]. 中华眼外伤职业眼病杂志, 2019,41(1):12-15. DOI: 10.3760/cma.j.issn.2095-1477.2019.01.004 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
柯红琴,董宇婕,刘海,. 云南省6个地区农村人群翼状胬肉患病率及其影响因素的研究[J]. 中华眼科杂志, 2022,58(10):769-777. DOI: 10.3760/cma.j.cn112142-20211220-00591 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Zhong H , Cha X , Wei T ,et al. Prevalence of and risk factors for pterygium in rural adult chinese populations of the Bai nationality in Dali: the Yunnan Minority Eye Study[J]. Invest Ophthalmol Vis Sci, 2012,53(10):6617-6621. DOI: 10.1167/iovs.11-8947 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Jiao W , Zhou C , Wang T ,et al. Prevalence and risk factors for pterygium in rural older adults in Shandong Province of China: a cross-sectional study[J]. Biomed Res Int, 2014,2014:658648. DOI: 10.1155/2014/658648 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
潘周娴,单广良,王雪娇,. 甘肃省汉族和裕固族的翼状胬肉患病率及相关危险因素研究[J]. 中华眼科杂志, 2020,56(8):600-607. DOI: 10.3760/cma.j.cn112142-20200324-00224 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Malekifar P , Esfandiari H , Behnaz N ,et al. Risk Factors for Pterygium in Ilam Province, Iran[J]. J Ophthalmic Vis Res, 2017,12(3):270-274. DOI: 10.4103/jovr.jovr_85_16 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Cajucom-Uy H , Tong L , Wong TY ,et al. The prevalence of and risk factors for pterygium in an urban Malay population: the Singapore Malay Eye Study (SiMES)[J]. Br J Ophthalmol, 2010,94(8):977-981. DOI: 10.1136/bjo.2008.150847 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Fekadu SA , Assem AS , Adimassu NF . Prevalence of pterygium and its associated factors among adults aged 18 years and above in Gambella town, Southwest Ethiopia, May 2019[J]. PLoS One, 2020,15(9):e0237891. DOI: 10.1371/journal.pone.0237891 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
West S , Muñoz B . Prevalence of pterygium in Latinos: Proyecto VER[J]. Br J Ophthalmol, 2009,93(10):1287-1290. DOI: 10.1136/bjo.2008.152694 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
刘琳琳,王辉,吴晶,. 橙皮苷对人翼状胬肉成纤维细胞增生的抑制作用[J]. 眼科新进展, 2020,40(1):26-30. DOI: 10.13389/j.cnki.ra0.2020.0006 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
吴晓念,李敏,徐帆. 翼状胬肉治疗技术研究进展[J]. 眼科新进展, 2021,41(3):296-300. DOI: 10.13389/j.cnki.rao.2021.0062 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Wan Zaki W , Mat Daud M , Abdani SR ,et al. Automated pterygium detection method of anterior segment photographed images[J]. Comput Methods Programs Biomed, 2018,154:71-78. DOI: 10.1016/j.cmpb.2017.10.026 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Zhu S , Fang X , Qian Y ,et al. Pterygium Screening and Lesion Area Segmentation Based on Deep Learning[J]. J Healthc Eng, 2022,2022:3942110. DOI: 10.1155/2022/3942110 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
金玲,颜智鹏,陈楠,. 基于深度学习的翼状胬肉智能诊断系统初步研究[J]. 人工智能, 2021(3):48-55. DOI: 10.16453/j.cnki.ISSN2096-5036.2021.03.006 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Mesquita RG , Figueiredo EMN . An algorithm for measuring pterygium′s progress in already diagnosed eyes[C]//2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),Kyoto, Japan, 2012:733-736. DOI: 10.1109/ICASSP.2012.6287988 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Gao X , Wong DW , Aryaputera AW ,et al. Automatic pterygium detection on cornea images to enhance computer-aided cortical cataract grading system[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2012,2012:4434-4437. DOI: 10.1109/EMBC.2012.6346950 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Minami K , Miyata K , Otani A ,et al. Detection of increase in corneal irregularity due to pterygium using Fourier series harmonic analyses with multiple diameters[J]. Jpn J Ophthalmol, 2018,62(3):342-348. DOI: 10.1007/s10384-018-0583-8 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Azemin MZC , Gaffur NA , Hilmi MR ,et al. Benchmarked pterygium images for human and machine graders[J]. Journal of Engineering & Applied Sciences, 2016,11(11):2078-2382. DOI: 10.3923/jeasci.2016.2378.2382 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Mohd Radzi H , Khairidzan MK , Mohd Zulfaezal CA ,et al. Corneo-pterygium total area measurements utilising image analysis method[J]. J Optom, 2019,12(4):272-277. DOI: 10.1016/j.optom.2019.04.001 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Fang X , Deshmukh M , Chee ML ,et al. Deep learning algorithms for automatic detection of pterygium using anterior segment photographs from slit-lamp and hand-held cameras[J]. Br J Ophthalmol, 2022,106(12):1642-1647. DOI: 10.1136/bjophthalmol-2021-318866 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Jais FN , Che Azemin MZ , Hilmi MR ,et al. Postsurgery Classification of Best-Corrected Visual Acuity Changes Based on Pterygium Characteristics Using the Machine Learning Technique[J]. ScientificWorldJournal, 2021,2021:6211006. DOI: 10.1155/2021/6211006 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Abdani SR , Zulkifley MA , Shahrimin MI ,et al. Computer-Assisted Pterygium Screening System: A Review[J]. Diagnostics (Basel), 2022,12(3):639. DOI: 10.3390/diagnostics12030639 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Zamani N , Zaki W , Huddin A ,etal. Automated Pterygium Detection Using Deep Neural Network[J]. IEEE Access, 2020(8):191659-191672. DOI: 10.1109/ACCESS.2020.3030787 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Abdani SR , Zulkifley MA , Zulkifley NH . Group and Shuffle Convolutional Neural Networks with Pyramid Pooling Module for Automated Pterygium Segmentation[J]. Diagnostics (Basel), 2021,11(6):1104. DOI: 10.3390/diagnostics11061104 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Charilaou P , Battat R . Machine learning models and over-fitting considerations[J]. World J Gastroenterol, 2022,28(5):605-607. DOI: 10.3748/wjg.v28.i5.605 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Serraoui I , Laiadi O , Ouamane A ,et al. Knowledge-based tensor subspace analysis system for kinship verification[J]. Neural Netw, 2022,151:222-237. DOI: 10.1016/j.neunet.2022.03.020 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Zheng B , Liu Y , He K ,et al. Research on an Intelligent Lightweight-Assisted Pterygium Diagnosis Model Based on Anterior Segment Images[J]. Dis Markers, 2021,2021:7651462. DOI: 10.1155/2021/7651462 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Wang W , Hu Y , Zou T ,et al. A New Image Classification Approach via Improved MobileNet Models with Local Receptive Field Expansion in Shallow Layers[J]. Comput Intell Neurosci, 2020,2020:8817849. DOI: 10.1155/2020/8817849 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Li Z , Li C , Deng L ,et al. Improved AlexNet with Inception-V4 for Plant Disease Diagnosis[J]. Comput Intell Neurosci, 2022,2022:5862600. DOI: 10.1155/2022/5862600 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Ghosh S , Chaki A , Santosh KC . Improved U-Net architecture with VGG-16 for brain tumor segmentation[J]. Phys Eng Sci Med, 2021,44(3):703-712. DOI: 10.1007/s13246-021-01019-w .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Mondal M , Bharati S , Podder P . Diagnosis of COVID-19 Using Machine Learning and Deep Learning: A Review[J]. Curr Med Imaging, 2021,17(12):1403-1418. DOI: 10.2174/1573405617666210713113439 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Fang X , Deshmukh M , Chee ML ,et al. Deep learning algorithms for automatic detection of pterygium using anterior segment photographs from slit-lamp and hand-held cameras[J]. Br J Ophthalmol, 2022,106(12):1642-1647. DOI: 10.1136/bjophthalmol-2021-318866 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Xu W , Jin L , Zhu PZ ,et al. Implementation and Application of an Intelligent Pterygium Diagnosis System Based on Deep Learning[J]. Front Psychol, 2021,12:759229. DOI: 10.3389/fpsyg.2021.759229 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Jaisakthi SM , Mirunalini P , Aravindan C ,et al. Classification of skin cancer from dermoscopic images using deep neural network architectures[J]. Multimed Tools Appl, 2023,82(10):15763-15778. DOI: 10.1007/s11042-022-13847-3 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Wan C , Shao Y , Wang C ,et al. A Novel System for Measuring Pterygium′s Progress Using Deep Learning[J]. Front Med (Lausanne), 2022,9:819971. DOI: 10.3389/fmed.2022.819971 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Chen LC , Papandreou G , Kokkinos I ,et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[J]. IEEE Trans Pattern Anal Mach Intell, 2018,40(4):834-848. DOI: 10.1109/TPAMI.2017.2699184 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Hashemi SR , Salehi S , Erdogmus D ,et al. Asymmetric Loss Functions and Deep Densely Connected Networks for Highly Imbalanced Medical Image Segmentation: Application to Multiple Sclerosis Lesion Detection[J]. IEEE Access, 2019,7:721-1735. DOI: 10.1109/ACCESS.2018.2886371 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
梁礼明,钱艳群,吴媛媛. 融合跨阶段局部网络和空间金字塔池化的Yolov3目标检测算法[J]. 重庆理工大学学报(自然科学版), 2021,35(10):136-143. DOI: 10.3969/j.issn.1674-8425(z).2021.10.018 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
朱绍军,方新闻,郑博,. 基于卷积神经网络的翼状胬肉病灶分割研究[J]. 国际眼科杂志, 2022,22(6):1016-1019. DOI: 10.3980/j.issn.1672-5123.2022.6.26 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Cai W , Xu J , Wang K ,et al. EyeHealer: A large-scale anterior eye segment dataset with eye structure and lesion annotations[J]. Precis Clin Med, 2021,4(2):85-92. DOI: 10.1093/pcmedi/pbab009 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Devalla SK , Renukanand PK , Sreedhar BK ,et al. DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images[J]. Biomed Opt Express, 2018,9(7):3244-3265. DOI: 10.1364/BOE.9.003244 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Badrinarayanan V , Kendall A , Cipolla R . SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017,39(12):2481-2495. DOI: 10.1109/TPAMI.2016.2644615 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Yao X , Yang H , Wu Y ,et al. Land Use Classification of the Deep Convolutional Neural Network Method Reducing the Loss of Spatial Features[J]. Sensors (Basel), 2019,19(12):2792. DOI: 10.3390/s19122792 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
于薏,周奕文,杨燕宁. 人工智能在眼表疾病中的应用现况[J]. 国际眼科杂志, 2022,22(5):726-730. DOI: 10.3980/j.issn.1672-5123.2022.5.06 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
杨卫华,邵毅,许言午,. 眼科人工智能临床研究评价指南(2023)[J]. 国际眼科杂志, 2023,23(7):1064-1071. DOI: 10.3980/j.issn.1672-5123.2023.7.03 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
钱会,Email: mocdef.6ab21025781iuhnaiq
B
米玛卓玛, 陈亚萍, 纪玉珂, 等. 基于眼前节照相的翼状胬肉人工智能辅助诊断研究进展和思考[J]. 数字医学与健康, 2023, 1(2): 115-120. DOI: 10.3760/cma.j.cn101909-20230707-00013.
C
所有作者声明无利益冲突
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号