翼状胬肉是一种常见眼表疾病,表现为纤维血管组织增殖和入侵。翼状胬肉在早期仅引起轻微的眼表不适,一旦累及角膜瞳孔区域,就会影响患者的视力。所以应尽早发现翼状胬肉,并采取相应措施控制其生长。多数患者无法辨别翼状胬肉的出现与发展,而目前的医疗资源尚无法满足完全依靠眼科医生来定期检查。基于机器学习技术,开发一种基于简单成像模式的翼状胬肉人工智能辅助诊断系统,可利于便捷检测翼状胬肉组织的存在并进行分类、分割。本文总结了人工智能在翼状胬肉诊断应用中的最新技术,旨在为人工智能翼状胬肉诊断应用的未来发展提供展望。
Pterygium is a common ocular surface disease in which fibrous vascular tissue multiplies and grows into the corneal area. In the early stage, there is no obvious effect on the patient other than minor ocular surface discomfort. Once the pterygium involves the corneal pupil area, it can affect the patient′s vision. Therefore, it is necessary to detect this condition as early as possible and take corresponding measures to control its growth. Most patients are unable to identify the occurrence and development of pterygium, and current medical resources cannot meet the requirements if regular examinations by ophthalmologist are solely relied upon. Therefore, it is necessary to develop a pterygium artificial intelligence assisted diagnosis system based on anterior segment photographs, so as to conveniently detect the existence of pterygium tissue and perform classification and segmentation. In this paper, the latest technologies of artificial intelligence in the diagnosis of pterygium are reviewed, aiming at providing prospects for the development of artificial intelligence in the diagnosis of pterygium.
米玛卓玛,陈亚萍,纪玉珂,等. 基于眼前节照相的翼状胬肉人工智能辅助诊断研究进展和思考[J]. 数字医学与健康,2023,01(02):115-120.
DOI:10.3760/cma.j.cn101909-20230707-00013版权归中华医学会所有。
未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。