实验研究
ENGLISH ABSTRACT
氧诱导视网膜病变模型小鼠肾组织代谢组学研究
董利军
祁慧
杨宇航
毛星星
张国明
张少冲
雷和田
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20220526-00248
Metabolomics study of kidney tissue in a mouse model of oxygen-induced retinopathy
Dong Lijun
Qi Hui
Yang Yuhang
Mao Xingxing
Zhang Guoming
Zhang Shaochong
Lei Hetian
Authors Info & Affiliations
Dong Lijun
Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, China
Qi Hui
Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, China
Yang Yuhang
Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, China
Mao Xingxing
Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, China
Zhang Guoming
Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, China
Zhang Shaochong
Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, China
Lei Hetian
Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, China
·
DOI: 10.3760/cma.j.cn115989-20220526-00248
506
103
0
0
1
0
PDF下载
APP内阅读
摘要

目的探讨高氧环境对氧诱导视网膜病变(OIR)模型小鼠肾脏代谢物的影响,了解病理性视网膜血管新生和肾损伤之间的潜在机制。

方法采用随机数字表法将16只健康SPF级C57/B6J新生小鼠随机分为OIR组与正常对照组,每组8只。小鼠自出生后标准饲养至第7天(P7),OIR组小鼠和母鼠置于(75±2)%的高氧箱中饲养至P12,然后正常饲养;正常对照组一直在正常环境下饲养。各组小鼠在饲养P17时采用二氧化碳安乐死,取视网膜组织铺片并行血管异凝集素(IB4)染色,观察视网膜血管形态、中央无灌注区及病理性新生血管情况;另取小鼠肾组织进行液相色谱-质谱分析,取其对应小鼠的全血进行抗凝处理,通过离心沉淀,获得不含细胞成分的血浆,对血浆进行靶向代谢组学分析。使用代谢组学数据处理软件Progenesis QI v2.3对质谱信息进行解析,用无监督的主成分分析及正交偏最小二乘法分析(OPLS-DA)来区分各组间代谢轮廓的总体差异,比较2个组间代谢物的倍数变化。以变量权重值>1且 P<0.05为条件筛选出差异代谢物。基于KEGG数据库对差异代谢物进行代谢通路富集分析。

结果视网膜铺片IB4染色结果显示,P17时正常对照组小鼠视网膜血管分布均匀;OIR组小鼠视网膜周边血管迂曲、紊乱,中央可见大面积无灌注区域形成,在视网膜无灌注区和血管区交界处形成大量新生血管簇,呈强荧光染色。OIR组小鼠视网膜无灌注区相对面积为(25.16±3.50)%,明显大于正常对照组的(0.63±0.30)%,差异有统计学意义( t=12.07, P<0.001)。OPLS-DA模型参数R2X cum、解释率R2Y cum、和预测率Q2 cum分别为0.578、0.978和0.857,表明OPLS-DA模型具有较好的预测能力。共筛选鉴定到26个主要的差异代谢物,其中上调表达17个,下调表达9个,包括甘油磷脂类化合物[PC 20∶4(5Z,8Z,11Z,14Z)/0∶0、PC 22∶6(4Z,7Z,10Z,13Z,16Z,19Z)/0∶0、PC 14∶1(9Z)/20∶2(11Z,14Z)、PE P-18∶0/20∶4(6E,8Z,11Z,14Z)(5OH[S])]、氨基酸类代谢物(精氨酸、鸟氨酸、哌可酸和羟基赖氨酸)、嘌呤类(鸟嘌呤、次黄嘌呤、羟嘌醇)和脂肪酸类(15-棕榈酸甲酯、2,6,8,12-Tetramethyl-2,4-tridecadien-1-ol)等。差异代谢物主要富集于ABC转运蛋白(L-精氨酸、牛磺酸、肌醇、腺苷、N-乙酰基-D-氨基葡萄糖、L-谷氨酰胺)、氨酰-tRNA生物合成(L-异亮氨酸、L-脯氨酸、L-精氨酸、L-组氨酸、L-谷氨酰胺)、精氨酸生物合成(L-精氨酸、L-鸟氨酸、L-谷氨酰胺)等代谢通路。血浆的靶向代谢组学结果显示,差异的氨基酸类代谢产物主要富集于氨酰-tRNA生物合成、精氨酸生物合成代谢以及ABC转运蛋白等代谢通路。

结论OIR小鼠的ABC转运蛋白、氨酰-tRNA生物合成、精氨酸生物合成代谢通路可能参与了肾损伤及早产儿视网膜病变新生血管形成的病理变化过程。

氧诱导视网膜病变;小鼠;肾脏;液相色谱-质谱;代谢产物分析;早产儿视网膜病变
ABSTRACT

ObjectiveTo explore the effects of hyperoxic environments on renal metabolites to understand the potential mechanisms that contribute to pathologic retinal vascular neovascularization and renal injury through metabolomic studies in a mouse model of oxygen-induced retinopathy (OIR) model.

MethodsSixteen C57/B6J mice pups born to day 7 (P7) were randomly and equally divided into an OIR model group and a normal control group using a randomized numerical table of mother mice.Mice were reared standardly from birth until day 7 (P7), then mice and their mother mice in the OIR group were placed in a hyperoxic (75±2)% chamber until day 12 (P12) and then reared normally.Mice in the normal control group were reared normally throughout.Mice in two groups were killed by carbon dioxide euthanasia on postnatal day 17 (P17). The mice retinal wholemount from the two groups were made and stained with isolectin B4 (IB4) to observe the morphology of retinal vessels, central non-perfusion area and pathological neovascularization.The kidney tissue of P17 mice was analyzed by liquid chromatograph mass spectrometer.After anticoagulant treatment, the whole blood of mice was centrifuged and precipitated, and the obtained plasma without cellular components was analyzed by targeted metabonomics.Mass spectral information was interpreted using metabolomics data processing software Progenesis QI v2.3.Overall differences in metabolic profiles were distinguished by unsupervised principal component analysis and orthogonal partial least squares analysis (OPLS-DA). The fold change and P values of metabolites were compared between the two groups.The variable importance of projection value>1 and P value<0.05 was used to screen out differential metabolites.Metabolic pathway enrichment analysis of differential metabolites was performed based on the KEGG database.The feeding and use of animals were strictly in accordance with the requirements of the Ethics Committee of Jinan University, and the research protocol was reviewed and approved by the Ethics Committee of Jinan University (No.20200401-54).

ResultsThe IB4 staining of retinal wholemounts showed that the retinal blood vessels were evenly distributed in the P17 mice from control group.The peripheral retinal vessels were tortuous and disordered with a large non-perfusion area in central region in P17 mice from OIR group, and a large number of neovascularization clusters were formed at the junction of the nonperfusion area and the vascular area of the retina, showing strong fluorescent staining.The relative area of retinal nonperfusion area in OIR group was (25.16±3.50)%, which was significantly larger than (0.63±0.30)% in normal control group ( t=12.07, P<0.001). The OPLS-DA parameter R2X cum (0.578), interpretation rate R2Y cum (0.978) and prediction rate Q2 cum (0.857) values were all greater than 0.5, indicating that the OPLS-DA model had a good predictive ability.A total of 26 main differential metabolites were found, among which 17 were up-regulated and 9 were down-regulated, including glycerophospholipids (PC 20∶4(5Z, 8Z, 11Z, 14Z)/0∶0, PC 22∶6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)/0∶0, PC 14∶1(9Z)/20∶2(11Z, 14Z), PE P-18∶0/20∶4(6E, 8Z, 11Z, 14Z)(5OH[S]), amino acid metabolites (arginine, ornithine, pipecolic acid, and hydroxylysine), purines (guanine, hypoxanthine, hydroxypurinol), and fatty acids (methyl 15-palmitate, 2, 6, 8, 12-tetramethyl-2, 4-tridecadien-1-ol), and so on.Differential metabolites were mainly enriched in ABC transporters (L-arginine, taurine, inositol, adenosine, N-acetyl-D-glucosamine, L-glutamine), aminoacyl-tRNA biosynthesis (L-isoleucine, L-proline, L-arginine, L-histidine, L-glutamine), arginine biosynthesis (L-arginine, L-ornithine, L-glutamine) metabolic pathways.The plasma targeted metabonomics showed that the differential amino acid metabolites were mainly enriched in metabolic pathways such as aminoacyl-tRNA biosynthesis, arginine biosynthesis and metabolism, and ABC transporters.

ConclusionsABC transporter, aminoacyl-tRNA biosynthesis, and arginine biosynthesis metabolic pathways in OIR mice may participate in the pathological changes of renal injury and neovascularization in retinopathy of prematurity.

Oxygen-induced retinopathy;Mice;Kidney;Liquid chromatograph mass spectrometer;Metabolite analysis;Retinopathy of prematurity
Lei Hetian, Email: mocdef.labiamtoh81naitehiel
引用本文

董利军,祁慧,杨宇航,等. 氧诱导视网膜病变模型小鼠肾组织代谢组学研究[J]. 中华实验眼科杂志,2024,42(01):19-28.

DOI:10.3760/cma.j.cn115989-20220526-00248

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
本文评分
5 [累计1个]
早产儿视网膜病变(retinopathy of prematurity,ROP)是一种由于视网膜发育障碍导致血管异常增生的潜在致盲眼病,早产儿数量的急剧增加使ROP已成为全球儿童盲的主要原因之一 [ 1 ]。视网膜激光光凝是ROP的一线治疗方案,但对Ⅰ区病变和急进型后极部ROP治疗效果欠佳 [ 2 ]。随着对ROP发病机制的深入研究,玻璃体腔注射抗血管内皮生长因子(vascular endothelial growth factor,VEGF)药物已经成为一种有效治疗ROP的新手段 [ 3 ]。但是,有大量文献报道了注射抗VEGF药物产生的不良事件,尤其是肾相关疾病,包括蛋白尿恶化、高血压和血管凝血事件以及肾小球相关疾病 [ 4 , 5 , 6 , 7 ]。ROP和肾损伤是氧化应激反应诱发的早产儿典型疾病,早产儿极易受到氧化应激的影响,氧化剂和抗氧化剂之间的不平衡导致自由基水平升高,进而对器官造成氧化损伤 [ 8 ]。在大鼠氧诱导视网膜病变(oxygen-induced retinopathy,OIR)模型中,肾皮质中VEGF-A和血小板衍生因子β的表达在出生第5天(P5)和P19时与Ⅰ期ROP和Ⅱ期ROP相似,表明高氧诱导肾脏生成受损的机制与ROP相似 [ 9 ]。因此推测2种组织在高氧诱导下的病理变化可能有一定关联,而从代谢组学的角度探讨OIR小鼠肾组织与血浆的代谢机制可能为相关研究和临床工作提供新的思路。OIR模型是一种公认的研究视网膜新生血管疾病的动物模型 [ 10 , 11 ]。OIR模型的高通量转录组和蛋白组学研究发现大量的分子网络和潜在的治疗靶点 [ 12 , 13 , 14 ]。然而,许多生命活动发生在代谢物层面,如细胞信号释放、能量传递、细胞间通信等都受代谢物调控 [ 15 ]。因此,可通过代谢组学分析来识别疾病的病理过程 [ 16 ]。代谢组学已广泛应用于ROP及其他视网膜病理性新生血管增生类疾病的研究中,如增生性糖尿病视网膜病变患者玻璃体液和ROP患者血浆 [ 11 , 17 ]、OIR动物模型血浆及视网膜等样本中代谢产物的差异研究等 [ 18 ]。然而,临床研究和实验研究发现氧代谢相关疾病可同时引起眼部和肾组织相似反应,但ROP与早产儿高氧导致肾损伤的机制研究很少,其致病机制是否也相似需进一步证实。本研究拟采用非靶向代谢组学方法分析OIR小鼠肾匀浆的代谢产物变化,结合OIR小鼠靶向代谢组学的的方式探讨高氧导致的肾损伤及ROP病理性新生血管形成的作用机制。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Daruich A Bremond-Gignac D Behar-Cohen F et al. Retinopathy of prematurity:from prevention to treatment[J]Med Sci (Paris) 202036(10)∶900907. DOI: 10.1051/medsci/2020163 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
李曼红王亮张自峰两种抗VEGF药物治疗1型早产儿视网膜病变的疗效比较[J]国际眼科杂志 202121(5)∶866871. DOI: 10.3980/j.issn.1672-5123.2021.5.24 .
返回引文位置Google Scholar
百度学术
万方数据
Li MH Wang L Zhang ZF et al. Comparison of the effectiveness of conbercept versus ranibizumab in the treatment of type 1 retinopathy of prematurity[J]Int Eye Sci 202121(5)∶866871. DOI: 10.3980/j.issn.1672-5123.2021.5.24 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[3]
朱苾丹李绍军我国早产儿视网膜病变筛查及治疗现状[J]中国斜视与小儿眼科杂志 201927(3)∶4447,32. DOI: 10.3969/J.ISSN.1005-328X.2019.03.016 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Hanna RM Barsoum M Arman F et al. Nephrotoxicity induced by intravitreal vascular endothelial growth factor inhibitors:emerging evidence[J]Kidney Int 201996(3)∶572580. DOI: 10.1016/j.kint.2019.02.042 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Wu S Kim C Baer L et al. Bevacizumab increases risk for severe proteinuria in cancer patients[J]J Am Soc Nephrol 201021(8)∶13811389. DOI: 10.1681/ASN.2010020167 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Hanna RM Lopez E Wilson J et al. Minimal change disease onset observed after bevacizumab administration[J]Clin Kidney J 20169(2)∶239244. DOI: 10.1093/ckj/sfv139 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Zeb A Ali SR Rohra DK . Mechanism underlying hypertension and proteinuria caused by bevacizumab[J] J Co ll Physicians Surg Pak 200717(7)∶448449.
返回引文位置Google Scholar
百度学术
万方数据
[8]
Lembo C Buonocore G Perrone S Oxidative stress in preterm newborns[J/OL]Antioxidants (Basel) 202110(11)∶1672[2023-03-02]http://www.ncbi.nlm.nih.gov/pubmed/34829543. DOI: 10.3390/antiox10111672 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Nakagawa M Nishizaki N Endo A et al. Impaired nephrogenesis in neonatal rats with oxygen-induced retinopathy[J]Pediatr Int 201759(6)∶704710. DOI: 10.1111/ped.13264 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Connor KM Krah NM Dennison RJ et al. Quantification of oxygen-induced retinopathy in the mouse:a model of vessel loss,vessel regrowth and pathological angiogenesis[J]Nat Protoc 20094(11)∶15651573. DOI: 10.1038/nprot.2009.187 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Paris LP Johnson CH Aguilar E et al. Global metabolomics reveals metabolic dysregulation in ischemic retinopathy[J/OL]Metabolomics 20161215[2023-03-02]http://www.ncbi.nlm.nih.gov/pubmed/26617478. DOI: 10.1007/s11306-015-0877-5 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Zhang L Fu X Zeng H et al. Microarray analysis of long non-coding rnas and messenger RNAs in a mouse model of oxygen-induced retinopathy[J]Int J Med Sci 201916(4)∶537547. DOI: 10.7150/ijms.31274 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Vähätupa M Nättinen J Jylhä A et al. SWATH-MS proteomic analysis of oxygen-induced retinopathy reveals novel potential therapeutic targets[J]Invest Ophthalmol Vis Sci 201859(8)∶32943306. DOI: 10.1167/iovs.18-23831 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Vähätupa M Järvinen T Uusitalo-Järvinen H Exploration of oxygen-induced retinopathy model to discover new therapeutic drug targets in retinopathies[J/OL]Front Pharmacol 202011873[2023-03-12]http://www.ncbi.nlm.nih.gov/pubmed/32595503. DOI: 10.3389/fphar.2020.00873 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Rinschen MM Ivanisevic J Giera M et al. Identification of bioactive metabolites using activity metabolomics[J]Nat Rev Mol Cell Biol 201920(6)∶353367. DOI: 10.1038/s41580-019-0108-4 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Laíns I Gantner M Murinello S et al. Metabolomics in th e study of retinal health and disease [J]Prog Retin Eye Res 2019695779. DOI: 10.1016/j.preteyeres.2018.11.002 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Zhou Y Xu Y Zhang X et al. Plasma metabolites in treatment-requiring retinopathy of prematurity:potential biomarkers identified by metabolomics[J/OL]Exp Eye Res 2020199108198[2023-03-14]http://www.ncbi.nlm.nih.gov/pubmed/32828955. DOI: 10.1016/j.exer.2020.108198 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Lu F Liu Y Guo Y et al. Metabolomic changes of blood plasma associated with two phases of rat OIR[J/OL]Exp Eye Res 2020190107855[2023-03-14]http://www.ncbi.nlm.nih.gov/pubmed/31669404. DOI: 10.1016/j.exer.2019.107855 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
漆晨韩倩薄其玉氧诱导视网膜病变小鼠模型的蛋白表达谱分析[J]中华实验眼科杂志 201533(12)∶10691075. DOI: 10.3760/cma.j.issn.2095-0160.2015.12.004 .
返回引文位置Google Scholar
百度学术
万方数据
Qi C Han Q Bo QY et al. Analysis of protein expression profiling in a mouse model of oxygen-induced retinopathy[J]Chin J Exp Ophthalmol 201533(12)∶10691075. DOI: 10.3760/cma.j.issn.2095-0160.2015.12.004 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[20]
Li J Wu Y Liu B et al. Retro-orbital injection of FITC-dextran combined with isolectin B4 in assessing the retinal neovascularization defect[J/OL]BMC Ophthalmol 202121(1)∶208[2023-03-16]http://www.ncbi.nlm.nih.gov/pubmed/33975571. DOI: 10.1186/s12886-021-01969-5 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
<x>O</x> <x>'</x> <x>Neill</x> RA Gallagher P Douglas T et al. Evaluation of long-term intravitreal anti-vascular endothelial growth factor injections on renal function in patients with and without diabetic kidney disease[J/OL]BMC Nephrol 201920(1)∶478[2023-03-16]http://www.ncbi.nlm.nih.gov/pubmed/31878889. DOI: 10.1186/s12882-019-1650-1 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Zhao H Wu L Wang Y et al. Nicotine promotes vascular endothelial growth factor secretion by human trophoblast cells under hypoxic conditions and improves the proliferation and tube formation capacity of human umbilical endothelial cells[J]Reprod Biomed Online 201734(4)∶406413. DOI: 10.1016/j.rbmo.2016.12.014 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Chade AR . VEGF:potential therapy for renal regeneration[J/OL]F1000 Med Rep 201241[2023-03-16]http://www.ncbi.nlm.nih.gov/pubmed/22238513. DOI: 10.3410/M4-1 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Sene A Chin-Yee D Apte RS . Seeing through VEGF:innate and adaptive immunity in pathological angiogenesis in the eye[J]Trends Mol Med 201521(1)∶4351. DOI: 10.1016/j.molmed.2014.10.005 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Tomita Y Cagnone G Fu Z et al. Vitreous metabolomics profiling of proliferative diabetic retinopathy[J]Diabetologia 202164(1)∶7082. DOI: 10.1007/s00125-020-05309-y .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Jin J Sun Q Wu Z et al. 1 H-NMR analysis of amino acid m etabolism in aqueous humor of patients with cataract,according to diabetes status [J/OL]J Int Med Res 202048(6)∶300060520934658[2023-03-24]http://www.ncbi.nlm.nih.gov/pubmed/32588698. DOI: 10.1177/0300060520934658 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Anderson LL Mao X Scott BA et al. Survival from hypoxia in C.elegans by inactivation of aminoacyl-tRNA synthetases[J]Science 2009323(5914)∶630633. DOI: 10.1126/science.1166175 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Wang Y Ning Y Alam GN et al. Amino acid deprivation promotes tumor angiogenesis through the GCN2/ATF4 pathway[J]Neoplasia 201315(8)∶989997. DOI: 10.1593/neo.13262 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Longchamp A Mirabella T Arduini A et al. Amino acid restriction triggers angiogenesis via GCN 2 /ATF 4 regulation of VEGF and H 2 S production [J]Cell 2018173(1)∶117129. DOI: 10.1016/j.cell.2018.03.001 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Abcouwer SF Marjon PL Loper RK et al. Response of VEGF expression to amino acid deprivation and inducers of endoplasmic reticulum stress[J]Invest Ophthalmol Vis Sci 200243(8)∶27912798.
返回引文位置Google Scholar
百度学术
万方数据
[31]
Zhou Y Tan W Zou J et al. Metabolomics analyses of mouse retinas in oxygen-induced retinopathy[J/OL]Invest Ophthalmol Vis Sci 202162(10)∶9[2023-03-24]http://www.ncbi.nlm.nih.gov/pubmed/34374743. DOI: 10.1167/iovs.62.10.9 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Dallas DC Underwood MA Zivkovic AM et al. Digestion of protein in premature and term infants[J/OL]J Nutr Disord Ther 20122(3)∶112[2023-03-24]http://www.ncbi.nlm.nih.gov/pubmed/24744976. DOI: 10.4172/2161-0509.1000112 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Ribeiro AL Ribeiro V Drug metabolism and transport under hypoxia[J]Curr Drug Metab 201314(9)∶969975. DOI: 10.2174/1389200211314090003 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Comerford KM Wallace TJ Karhausen J et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene[J]Cancer Res 200262(12)∶33873394.
返回引文位置Google Scholar
百度学术
万方数据
[35]
Schmitz G Langmann T Transcriptional regulatory networks in lipid metabolism control ABCA1 expression[J]Biochim Biophys Acta 20051735(1)∶119. DOI: 10.1016/j.bbalip.2005.04.004 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Ko EB Hwang KA Choi KC . Prenatal toxicity of the environmental pollutants on neuronal and cardiac development derived from embryonic stem cells[J]Reprod Toxicol 2019901523. DOI: 10.1016/j.reprotox.2019.08.006 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Xia J Wang Z Zhang F Association between related purine metabolites and diabetic retinopathy in type 2 diabetic patients[J/OL]Int J Endocrinol 20142014651050[2023-03-28]http://www.ncbi.nlm.nih.gov/pubmed/24688543. DOI: 10.1155/2014/651050 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Ikelle L Naash MI Al-Ubaidi MR . Oxidative stress,diabetic retinopathy,and superoxide dismutase 3[J]Adv Exp Med Biol 20191185335339. DOI: 10.1007/978-3-030-27378-1_55 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
雷和田,Email: mocdef.labiamtoh81naitehiel
B

董利军:参与酝酿和设计实验、实施研究、采集数据、分析/解释数据、文章撰写;祁慧、杨宇航、毛星星:参与实施研究、采集数据;张国明、张少冲:参与实验设计及论文指导;雷和田:参与实验设计、论文审阅及定稿

C
所有作者均声明不存在利益冲突
D
国家自然科学基金 (82070989)
深圳市"医疗卫生三名工程"项目 (SZSM202011015)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号