综述
ENGLISH ABSTRACT
磷酸戊糖途径抑制感光细胞凋亡及分子机制的研究进展
韩思杨
孙晓东 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20210317-00179
Research progress on the inhibition of photoreceptor cell apoptosis by the pentose phosphate pathway and its molecular mechanism
Han Siyang
Sun Xiaodong
Authors Info & Affiliations
Han Siyang
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
Sun Xiaodong
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
·
DOI: 10.3760/cma.j.cn115989-20210317-00179
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

感光细胞是一种特殊的神经上皮细胞,在视觉信号的产生和传导中具有重要作用,其主要通过大量摄取葡萄糖进行糖代谢以满足生理需求。而感光细胞凋亡,则是视网膜疾病导致患者盲的共同原因,该过程伴有氧化应激和合成代谢的改变。近期研究发现,糖代谢的重要分支——磷酸戊糖途径,在上述病理发展中起重要作用。其产物烟酰胺腺嘌呤二核苷酸磷酸(NADPH)作为感光细胞中重要的供氢体,参与物质合成代谢,对抗氧化应激,进而抑制感光细胞的凋亡。本文将从代谢活动和分子通路的角度,针对磷酸戊糖途径抑制感光细胞凋亡的作用机制进行综述,以期为临床科研工作提供参考。

感光细胞;凋亡;磷酸戊糖途径;氧化应激;脂质代谢;综述
ABSTRACT

Photoreceptor cells are a special type of neuroepithelial cells, which play an important role in the generation and transmission of visual signals.They mainly meet the physiological needs by ingesting a large amount of glucose for glucose metabolism.Photoreceptor cell apoptosis is a common cause of blindness in patients with retinal diseases, which is accompanied by changes in oxidative stress and anabolism.Recent studies have found that pentose phosphate pathway, an important branch of glucose metabolism, plays an essential role in the development of the above-mentioned pathology.Its product, nicotinamide adenine dinucleotide phosphate (NADPH), as a crucial hydrogen donor in photoreceptor cells, participates in substance synthesis and metabolism, resists oxidative stress, and then inhibits apoptosis of photoreceptor cells.This review summarized the mechanism of pentose phosphate pathway in inhibiting photoreceptor cell apoptosis from the perspective of view of metabolic activity and molecular pathway to provide reference for clinical scientific research.

Photoreceptor cells;Apoptosis;Pentose phosphate pathway;Oxidative stress;Lipid metabolism;Review
Sun Xiaodong, Email: nc.defudabe.utjsnusdx
引用本文

韩思杨,孙晓东. 磷酸戊糖途径抑制感光细胞凋亡及分子机制的研究进展[J]. 中华实验眼科杂志,2024,42(01):72-75.

DOI:10.3760/cma.j.cn115989-20210317-00179

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
感光细胞凋亡是众多视网膜疾病致盲的共同原因,并伴有氧化应激、合成代谢等改变。以视网膜脱离(retinal detachment,RD)为例,积极治疗后,部分患者视力仍不可逆下降甚至丧失,其病理基础为感光细胞凋亡 [ 1 ]。因此寻找有效干预靶点,抑制感光细胞凋亡,促进视功能恢复对于临床医生和患者来说十分重要。感光细胞作为摄取葡萄糖最多的细胞之一,糖代谢在其生理病理过程中占据重要地位。与有氧呼吸和乳酸发酵不同,磷酸戊糖途径作为糖代谢的另一条通路,在合成代谢和抗氧化应激中具有重要作用。研究发现,磷酸戊糖途径的产物-烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate,NADPH)可作为供氢体,对抗氧化应激,进而阻止脂质过氧化、线粒体功能破坏和大分子损伤造成的细胞凋亡 [ 2 ]。与此同时,NADPH还可参与合成代谢,如脂质代谢和视色素代谢等 [ 3 ],在一定程度上避免了因代谢异常导致的细胞凋亡。本文对磷酸戊糖途径的抗感光细胞凋亡作用机制进行总结,希望为未来临床和科研工作提供新的科学证据。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Dunaief JL Dentchev T Ying GS et al. The role of apoptosis in age-related macular degeneration[J]Arch Ophthalmol 2002120(11)∶14351442. DOI: 10.1001/archopht.120.11.1435 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Huang B Liang JJ Zhuang X et al. Intravitreal injection of hydrogen peroxide induces acute retinal degeneration,apoptosis,and oxidative stress in mice[J/OL]Oxid Med Cell Longev 201820185489476[2023-03-28]http://www.ncbi.nlm.nih.gov/pubmed/30533172. DOI: 10.1155/2018/5489476 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Niu X Stancliffe E Gelman SJ et al. Cytosolic and mitochondrial NADPH fluxes are independently regulated[J]Nat Chem Biol 202319(7)∶837845. DOI: 10.1038/s41589-023-01283-9 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Patra KC Hay N The pentose phosphate pathway and cancer[J]Trends Biochem Sci 201439(8)∶347354. DOI: 10.1016/j.tibs.2014.06.005 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
D'Urso M Mareni C Toniolo D et al. Regulation of glucose 6-phosphate dehydrogenase expression in CHO-human fibroblast somatic cell hybrids[J]Somatic Cell Genet 19839(4)∶429443. DOI: 10.1007/BF01543044 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Rajala R Aerobic glycolysis in the retina:functional roles of pyruvate kinase isoforms[J/OL]Front Cell Dev Biol 20208266[2023-03-28]http://www.ncbi.nlm.nih.gov/pubmed/32426353. DOI: 10.3389/fcell.2020.00266 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Kevany BM Palczewski K Phagocytosis of retinal rod and cone photoreceptors[J]Physiology (Bethesda) 201025(1)∶815. DOI: 10.1152/physiol.00038.2009 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Louer E Yi G Carmone C et al. Genes involved in energy metabolism are differentially expressed during the day-night cycle in murine retinal pigment epithelium[J/OL]Invest Ophthalmol Vis Sci 202061(5)∶49[2023-03-28]http://www.ncbi.nlm.nih.gov/pubmed/32460311. DOI: 10.1167/iovs.61.5.49 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Aït-Ali N Fridlich R Millet-Puel G et al. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis[J]Cell 2015161(4)∶817832. DOI: 10.1016/j.cell.2015.03.023 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Li R Kato H Taguchi Y et al. Glucose starvation-caused oxidative stress induces inflammation and autophagy in human gingival fibroblasts[J/OL]Antioxidants (Basel) 202211(10)∶1907[2023-12-08]DOI: 10.3390/antiox11101907 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Wang W Lee SJ Scott PA et al. Two-step reactivation of dormant cones in retinitis pigmentosa[J]Cell Rep 201615(2)∶372385. DOI: 10.1016/j.celrep.2016.03.022 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Rajala A Wang Y Soni K et al. Pyruvate kinase M2 isoform deletion in cone photoreceptors results in age-related cone degeneration[J/OL]Cell Death Dis 20189(7)∶737[2023-03-29]http://www.ncbi.nlm.nih.gov/pubmed/29970877. DOI: 10.1038/s41419-018-0712-9 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Zhu J Gu Y Yan Y et al. Knocking out central metabolism genes to identify new targets and alternating substrates to improve lipid synthesis in Y.lipolytica[J/OL]Front Bioeng Biotechnol 2023111098116[2023-12-08]http://www.ncbi.nlm.nih.gov/pubmed/36714010. DOI: 10.3389/fbioe.2023.1098116 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Giusto NM Pasquaré SJ Salvador GA et al. Lipid metabolism in vertebrate retinal rod outer segments[J]Prog Lipid Res 200039(4)∶315391. DOI: 10.1016/s0163-7827(00)00009-6 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Catalá A An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay[J]Int J Biochem Cell Biol 200638(9)∶14821495. DOI: 10.1016/j.biocel.2006.02.010 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
孟宪敏王光璐金秀英糖尿病视网膜病变与糖代谢氧化还原的关系[J]中华实验眼科杂志 200018(1)∶8688. DOI: 10.3760/cma.j.issn.0254-1785.1999.04.001 .
返回引文位置Google Scholar
百度学术
万方数据
Meng XM Wang GL Jin XY . Relationship between diabetic retinopathy glucose metabolism and redox imbalance[J]Chin J Exp Ophthalmol 200018(1)∶8688. DOI: 10.3760/cma.j.issn.0254-1785.1999.04.001 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[17]
Winkler BS Boulton ME Gottsch JD et al. Oxidative damage and age-related macular degeneration[J]Mol Vis 1999532.
返回引文位置Google Scholar
百度学术
万方数据
[18]
Perdices L Fuentes-Broto L Segura F et al. Hepatic oxidative stress in pigmented P23H rhodopsin transgenic rats with progressive retinal degeneration[J]Free Radic Biol Med 2018124550557. DOI: 10.1016/j.freeradbiomed.2018.07.005 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Chenna S Koopman W Prehn J et al. Mechanisms and mathematical modeling of ROS production by the mitochondrial electron transport chain[J]Am J Physiol Cell Physiol 2022323(1)∶C69C83. DOI: 10.1152/ajpcell.00455.2021 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Chen C Kono M Koutalos Y Photooxidation mediated by 11- cis and all- trans retinal in single isolated mouse rod photoreceptors [J]Photochem Photobiol Sci 202019(10)∶13001307. DOI: 10.1039/d0pp00060d .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Camacho ET Brager D Elachouri G et al. A mathematical analysis of aerobic glycolysis triggered by glucose uptake in cones[J/OL]Sci Rep 20199(1)∶4162[2023-03-30]http://www.ncbi.nlm.nih.gov/pubmed/30858444. DOI: 10.1038/s41598-019-39901-z .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Xiong Y Uys JD Tew KD et al. S-glutathionylation:from molecular mechanisms to health outcomes[J]Antioxid Redox Signal 201115(1)∶233270. DOI: 10.1089/ars.2010.3540 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Anastasiou D Poulogiannis G Asara JM et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses[J]Science 2011334(6060)∶12781283. DOI: 10.1126/science.1211485 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Bensaad K Tsuruta A Selak MA et al. TIGAR,a p53-inducible regulator of glycolysis and apoptosis[J]Cell 2006126(1)∶107120. DOI: 10.1016/j.cell.2006.05.036 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Patra KC Hay N The pentose phosphate pathway and cancer[J]Trends Biochem Sci 201439(8)∶347354. DOI: 10.1016/j.tibs.2014.06.005 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Lillig CH Holmgren A Thioredoxin and related molecules—from biology to health and disease[J]Antioxid Redox Signal 20079(1)∶2547. DOI: 10.1089/ars.2007.9.25 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Cronin T Raffelsberger W Lee-Rivera I et al. The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress[J]Cell Death Differ 201017(7)∶11991210. DOI: 10.1038/cdd.2010.2 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Mei X Chaffiol A Kole C et al. The thioredoxin encoded by the rod-derived cone viability factor gene protects cone photoreceptors against oxidative stress[J]Antioxid Redox Signal 201624(16)∶909923. DOI: 10.1089/ars.2015.6509 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Elachouri G Lee-Rivera I Clérin E et al. Thioredoxin rod-derived cone viability factor protects against photooxidative retinal damage[J]Free Radic Biol Med 2015812229. DOI: 10.1016/j.freeradbiomed.2015.01.003 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Kondoh H Lleonart ME Gil J et al. Glycolytic enzymes can modulate cellular life span[J]Cancer Res 200565(1)∶177185.
返回引文位置Google Scholar
百度学术
万方数据
[31]
Lempiäinen H Halazonetis TD . Emerging common themes in regulation of PIKKs and PI3Ks[J]EMBO J 200928(20)∶30673073. DOI: 10.1038/emboj.2009.281 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Jiang P Du W Wang X et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase[J]Nat Cell Biol 201113(3)∶310316. DOI: 10.1038/ncb2172 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Schwartzenberg-Bar-Yoseph F Armoni M Karnieli E The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression[J]Cancer Res 200464(7)∶26272633. DOI: 10.1158/0008-5472.can-03-0846 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Cosentino C Grieco D Costanzo V ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair[J]EMBO J 201130(3)∶546555. DOI: 10.1038/emboj.2010.330 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
张思远吕红彬Nrf2通路在糖尿病视网膜病变中的研究进展[J]中华实验眼科杂志 201634(5)∶471475. DOI: 10.3760/cma.j.issn.2095-0160.2016.05.017 .
返回引文位置Google Scholar
百度学术
万方数据
Zhang SY Lyu HB . Progress on Nrf2 pathway in diabetic retinopathy[J]Chin J Exp Ophthalmol 201634(5)∶471475. DOI: 10.3760/cma.j.issn.2095-0160.2016.05.017 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[36]
丁敏卢清君武坤NADPH氧化酶抑制剂对遗传性视网膜色素变性感光细胞凋亡的抑制作用[J]中华实验眼科杂志 201432(4)∶313317. DOI: 10.3760/cma.j.issn.2095-0160.2014.04.006 .
返回引文位置Google Scholar
百度学术
万方数据
Ding M Lu QJ Wu K et al. Inhibitor of NADPH oxidase slow photoreceptor cell death in the retinal degeneration of rd mice[J]Chin J Exp Ophthalmol 201432(4)∶313317. DOI: 10.3760/cma.j.issn.2095-0160.2014.04.006 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[37]
Vermot A Petit-Härtlein I Smith S et al. NADPH oxidases (NOX):an overview from discovery,molecular mechanisms to physiology and pathology[J/OL]Antioxidants (Basel) 202110(6)∶890[2023-12-08]http://www.ncbi.nlm.nih.gov/pubmed/34205998. DOI: 10.3390/antiox10060890 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
孙晓东,Email: nc.defudabe.utjsnusdx
B
所有作者均声明不存在利益冲突
C
国家自然科学基金重点项目 (81730026)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号