综述
ENGLISH ABSTRACT
骨科镁基植入物表面涂层改性技术的研究进展
柳伯韬
胡晓东
郝明明
彭兆祥
作者及单位信息
·
DOI: 10.3760/cma.j.cn121113-20230823-00119
Research progress of surface coating modification techniques for magnesium-based implants in orthopaedics
Liu Botao
Hu Xiaodong
Hao Mingming
Peng Zhaoxiang
Authors Info & Affiliations
Liu Botao
Department of Joint and Sports Medicine, the Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, China
Hu Xiaodong
Department of Joint and Sports Medicine, the Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, China
Hao Mingming
Department of Joint and Sports Medicine, the Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, China
Peng Zhaoxiang
Department of Joint and Sports Medicine, the Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, China
·
DOI: 10.3760/cma.j.cn121113-20230823-00119
1007
151
0
1
3
1
PDF下载
APP内阅读
摘要

镁及镁合金具有优异的机械性能、可降解性和生物相容性,这使其在骨科领域得到广泛关注与研究。但镁及镁合金过快的降解速度无法匹配骨骼自身愈合速度,并可能对周围细胞定植生长与分化产生不利影响,引起植入物早期松动,从而限制其在临床上的广泛应用。在解决镁植入物腐蚀速率不可控问题方面,表面涂层改性是一种可行且极具应用前景的抗腐蚀方案。表面涂层改性技术可以通过改善植入物表面骨诱导能力(如以磷酸盐陶瓷为基础的仿生涂层)或改善抗腐蚀性能(如耐磨损耐腐蚀的微弧氧化涂层、具有自修复潜力的植酸涂层)来优化骨-植入物界面的整合。在调控镁植入物降解速率的同时,还可通过复合成分改性实现促骨整合、药物传递、光热治疗等多功能应用。通过列举骨科镁植入物表面不同的涂层改性方案的优缺点、总结各种制备工艺中的关键技术以及对其复合改性方案进行探讨,可为制备满足骨科临床应用需求的多功能镁植入物提供参考。

镁;假体和植入物;表面改性;涂层
ABSTRACT

Magnesium and its alloys have been widely studied in the field of orthopaedics for their desirable mechanical properties, biodegradability and biocompatibility. However, the rapid degradation rate of magnesium and its alloys cannot match the healing process of bone itself, and may adversely affect the adhesion, growth and differentiation of surrounding cells, resulting in early loosening of implants, thus limiting their wide clinical application. Surface coating modification is a feasible and promising anti-corrosion solution to solve the problem of uncontrollable corrosion rate of magnesium implants. The surface coating modification technology can optimize the integration of the bone-implant interface by improving the bone induction ability of the implant surface (such as the bio-mimetic coating based on phosphate ceramics) or improving the corrosion resistance (such as the micro-arc oxidation coating with wear resistance and corrosion resistance, and the phytic acid coating with self-healing potential). While optimizing the degradation rate of magnesium implant, it can also realize multiple functions such as promoting osseointegration, drug delivery and photothermal therapy through composite component modification. In this paper, the advantages and disadvantages of different coating modification method on the surface of orthopaedic magnesium implants are comprehensively illustrated, and the key technologies in each preparation process are summarized and the composite modification methods are further discussed, so as to provide references for the preparation of multifunctional magnesium implants that meet the requirements of orthopaedic applications.

Magnesium;Prostheses and implants;Surface modification;Coatings
Peng Zhaoxiang, Email: mocdef.labiamtohoaxzp
引用本文

柳伯韬,胡晓东,郝明明,等. 骨科镁基植入物表面涂层改性技术的研究进展[J]. 中华骨科杂志,2024,44(01):58-64.

DOI:10.3760/cma.j.cn121113-20230823-00119

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
人口老龄化是全球面临的重要社会问题之一。随着老龄化趋势的加剧,临床上对骨科植入物的需求增大,推动了植入器械的创新发展 [ 1 ]。镁金属作为一种新兴的可生物降解材料,凭借其良好的生物相容性、优异的机械性能和机体可吸收性被认为是一种具有发展前景的骨科植入材料。作为骨科植入物的备选材料,镁金属能起到调节成骨分化、促进分离段骨质矿化的作用 [ 2 , 3 , 4 ]。已有研究证明镁离子的补充能够有效促进骨质沉积,提高骨密度 [ 5 ]。在机械性能上,镁是目前工程应用中最轻的金属材料,具有密度低、比强度高、比刚度高的性能优点,其屈服强度和抗拉伸能力与人体骨组织接近,可达到与皮质骨相似的弹性模量(15~20 GPa),能有效避免应力集中引起的成骨障碍和骨结合不良 [ 6 ]。相较于传统的惰性材料,可生物降解的镁植入物随着机体的代谢吸收能被新生骨组织完全替代,从而避免了骨愈合后二次手术取出植入物,减少了患者创伤、降低了医疗卫生成本。另外,镁植入物的降解颗粒可被机体吸收,避免了术后不可吸收的磨损颗粒对植入物周围组织产生持续的机械刺激,降低无菌性松动发生的风险 [ 7 ]
虽然镁具备优良的生物活性和机械性能,使用镁基合金作为植入材料的成功临床案例已有报道,但镁是一种化学性质活跃的金属元素,其在人体内不受调控的降解行为是限制镁植入物无法在临床广泛应用的重要原因之一。快速的降解常伴随植入部位的氢气积累,并可能加速植入物力学性能的衰减,导致机械性能不稳定,影响内固定效果 [ 5 ]。Noviana等 [ 8 ]的研究表明裸镁在体内降解产生的气肿会影响机体的气体交换并干扰细胞免疫的平衡,使机体处于高应激状态。此外,降解产生的局部气腔还会影响成骨细胞的黏附并对骨折端末梢血供造成负面影响,甚至可能引发气体栓塞而影响术后安全。
为提高镁金属在人体植入的安全性与可靠性,目前关于调控镁降解速率的方案已得到研究人员的广泛探索,主要的方向包括新型合金体系的开发和表面涂层改性技术的研发。合金化通过在镁基体中添加Ca、Zn、Al等第二相合金成分可以在一定程度上起到延缓降解、改善机械强度的作用 [ 9 , 10 , 11 ]。但是目前关于合金成分的生物安全性与合适配比尚无定论,并且有学者认为降解过程中杂质元素的不均匀析出会加速植入物后期的腐蚀进展,产生负面的降解效应。因此,单纯的合金化在镁植入物的抗腐蚀应用仍需进一步研究 [ 12 ]。目标是在保证植入物可控降解速率的同时兼顾植入物的生物相容性,在这个层面涂层改性技术被认为是一种可行的抗腐蚀方案 [ 13 , 14 ]
涂层改性技术是通过物理涂覆、化学沉积等手段在镁植入物表面形成一层合适的抗腐蚀层以改善腐蚀介质与镁基植入物的接触,从而在不干扰镁合金晶粒形貌的前提下起到调控降解速率的作用 [ 15 , 16 ]。表面涂层的存在防止了镁金属腐蚀产物的迅速堆积,降低了因快速降解而对骨-植入物界面的有害影响 [ 17 ]。虽然涂层改性技术并不能直接改善植入物整体的机械强度,但是通过降低植入物在体液环境下的腐蚀速率能对镁金属的力学衰减起到有力的保护,从而使镁金属腐蚀速率与骨折的再生速率相匹配,为受损的骨组织恢复机械强度提供了时间 [ 5 ];同时,在临床植入过程中,涂层在一定程度上也能降低应力作用对镁金属基体的损伤。
与未涂覆的镁植入物相比,涂层改性技术有两个主要优势。首先,防止了镁金属在植入初始阶段释放过量氢气和产生对成骨细胞有不利影响的极端碱性环境;其次,能调控镁离子的释放,从而稳定诱导新骨组织的形成,促进骨折断端的矿化愈合。通过优化表面微观形状,涂层还能提供更适宜的黏附界面,促进成骨细胞的增殖和铺展,提高镁植入物的骨整合性能 [ 18 ]。此外,涂层还具有丰富的改性位点,为复合涂层的制备提供了基础。通过复合涂层改性的方法可以引入药物递送系统、光热治疗系统等,针对特定临床场景进行优化设计,弥补镁植入物在临床应用中的不足 [ 19 ]。现有研究表明这种复合涂层改性技术改善了镁金属的生物相容性并丰富了植入物的生物学功能,具有较为广泛的应用前景。本综述集中举例了近年来应用于镁基植入物的涂层制备工艺以及基于不同涂层技术的复合改性方案,为镁基植入物在骨科领域的进一步研究与应用提供参考。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Wong R , Wong PY , Liu C ,et al. The imminent risk of a fracture-existing worldwide data: a systematic review and meta-analysis[J]. Osteoporos Int, 2022,33(12):2453-2466. DOI: 10.1007/s00198-022-06473-0 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Zhang Y , Xu J , Ruan YC ,et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nat Med, 2016,22(10):1160-1169. DOI: 10.1038/nm.4162 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Hamushan M , Cai W , Zhang Y ,et al. High-purity magnesium pin enhances bone consolidation in distraction osteogenesis via regulating Ptch protein activating Hedgehog-alternative Wnt signaling[J]. Bioact Mater, 2021,6(6):1563-1574. DOI: 10.1016/j.bioactmat.2020.11.008 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
王勇平,梁文强,谢亚东,. 可降解镁合金接骨板修复新西兰兔胫骨骨折的研究[J]. 中华实验外科杂志, 2020,37(11):2027-2030. DOI: 10.3760/cma.j.cn421213-20200313-00150 .
返回引文位置Google Scholar
百度学术
万方数据
Wang YP , Liang WQ , Xie YD ,et al. Experimental study on repairing tibial fracture with degradable magnesium alloy plate in New Zealand rabbit[J]. Chin J Exp Surg, 2020,37(11):2027-2030. DOI: 10.3760/cma.j.cn421213-20200313-00150 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[5]
Wang JL , Xu JK , Hopkins C ,et al. Biodegradable magnesium-based implants in orthopedics-a general review and perspectives[J]. Adv Sci (Weinh), 2020,7(8):1902443. DOI: 10.1002/advs.201902443 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Uppal G , Thakur A , Chauhan A ,et al. Magnesium based implants for functional bone tissue regeneration-A review[J]. Journal of Magnesium and Alloys, 2022,10(2):356-386. DOI: 10.1016/j.jma.2021.08.017 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Podzimek S , Himmlova L , Janatova T ,et al. Metal hypersensitivity and pro-inflammatory cytokine production in patients with failed orthopedic implants: a case-control study[J]. Clin Immunol, 2022,245:109152. DOI: 10.1016/j.clim.2022.109152 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Noviana D , Paramitha D , Ulum MF ,et al. The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats[J]. J Orthop Translat, 2016,5:9-15. DOI: 10.1016/j.jot.2015.08.003 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Sui B , Lu H , Liu X ,et al. High-purity Mg and Mg-1Ca alloys: comparative assessment of the merits regarding degradation, osteogenesis, and biosafety for orthopedic applications[J]. Journal of Materials Science & Technology, 2023,140:58-66. DOI: 10.1016/j.jmst.2022.08.036 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Lin ZS , Sun XT , Yang HZ . The Role of antibacterial metallic elements in simultaneously improving the corrosion resistance and antibacterial activity of magnesium alloys[J]. Materials & Design, 2021,198:109350. DOI: 10.1016/j.matdes.2020.109350 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Chen H , Yuan B , Zhao R ,et al. Evaluation on the corrosion resistance, antibacterial property and osteogenic activity of biodegradable Mg-Ca and Mg-Ca-Zn-Ag alloys[J]. Journal of Magnesium and Alloys, 2022,10(12):3380-3396. DOI: 10.1016/j.jma.2021.05.013 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
曾荣昌崔蓝月柯伟. 医用镁合金:成分、组织及腐蚀[J]. 金属学报, 2018,54(9):1215-1235. DOI: 10.11900/0412.1961.2018.00032 .
返回引文位置Google Scholar
百度学术
万方数据
Zeng RC , Cui LY , Ke W . Biomedical Magnesium alloys: composition, microstructure and corrosion[J]. Acta Metallurgica Sinica, 2018,54(9):1215-1235. DOI: 10.11900/0412.1961.2018.00032 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[13]
袁广银牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017,53(10):1168-1180. DOI: 10.11900/0412.1961.2017.00247 .
返回引文位置Google Scholar
百度学术
万方数据
Yuan GY , Niu JL . Research progress of biodegradable magnesium alloys for orthopedic applications[J]. Acta Metallurgica Sinica, 2017,53(10):1168-1180. DOI: 10.11900/0412.1961.2017.00247 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[14]
景绍慧周吉祥赵大鹏. Mg-Fe-LDH涂层改性AZ91D合金的耐蚀性、体外降解及成骨性能[J]. 粉末冶金材料科学与工程, 2022,27(5):509-518. DOI: 10.19976/j.cnki.43-1448/TF.2022031 .
返回引文位置Google Scholar
百度学术
万方数据
Jing SH , Zhou JX , Zhao DP ,et al. Corrosion resistance, in-vitro degradation and osteogenic properties of AZ91D alloy modified by Mg-Fe-LDH coating[J]. Materials Science and Engineering of Powder Metallurgy, 2022,27(5):509-518. DOI: 10.19976/j.cnki.43-1448/TF.2022031 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[15]
姜艳丽周扬夏琦兴. MB31镁合金表面化学还原沉积铁膜及其耐蚀性能[J]. 材料保护, 2019,52(1):55-58. DOI: 10.16577/j.cnki.42-1215/tb.2019.01.013 .
返回引文位置Google Scholar
百度学术
万方数据
Jiang YL , Zhou Y , Xia QX ,et al. Preparation and corrosion resistance of fe-rich coatings on MB31 magnesium alloy[J]. Materials Protection, 2019,52(1):55-58. DOI: 10.16577/j.cnki.42-1215/tb.2019.01.013 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[16]
赵铮,丁文飞,邵淑馨,. 西罗莫司-聚三亚甲基碳酸酯改性镁合金的降解和药物释放行为[J]. 中国组织工程研究, 2023,27(30):4836-4843. DOI: 10.12307/2023.558 .
返回引文位置Google Scholar
百度学术
万方数据
Zhao Z , Ding WF , Shao SX ,et al. Degradation and drug release behavior of sirolimus-poly(trimethylene carbonate) modified magnesium alloy[J]. Chinese Journal of Tissue Engineering Research, 2022,27(30):4836-4843. DOI: 10.12307/2023.558 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[17]
Hiromoto S , Nozoe E , Hanada K ,et al. In vivo degradation and bone formation behaviors of hydroxyapatite-coated Mg alloys in rat femur[J]. Mater Sci Eng C Mater Biol Appl, 2021,122:111942. DOI: 10.1016/j.msec.2021.111942 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Luo Y , Zhang C , Wang J ,et al. Clinical translation and challenges of biodegradable magnesium-based interference screws in ACL reconstruction[J]. Bioact Mater, 2021,6(10):3231-3243. DOI: 10.1016/j.bioactmat.2021.02.032 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Wang Z , Wang X , Pei J ,et al. Degradation and osteogenic induction of a SrHPO4-coated Mg-Nd-Zn-Zr alloy intramedullary nail in a rat femoral shaft fracture model[J]. Biomaterials, 2020,247:119962. DOI: 10.1016/j.biomaterials.2020.119962 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
皮国富王义生刘宏建. 羟基磷灰石涂层镁合金材料体内降解及生物相容性研究[J]. 中华实验外科杂志, 2010,27(8):1162-1164. DOI: 10.3760/cma.j.issn.1001-9030.2010.08.054 .
返回引文位置Google Scholar
百度学术
万方数据
Pi GF , Wang YS , Liu HJ ,et al. The degradation and biocompatibility of Hydroxyapatite coating magnesium alloy materials in rabbits' condyles of femur[J]. Chin J Exp Surg, 2010,27(8):1162-1164. DOI: 10.3760/cma.j.issn.1001-9030.2010.08.054 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[21]
Yao S , Xie Z A , Ye L ,et al. Ultrasmall sized calcium phosphate nanoclusters based organic-inorganic biofiber for accelerated bone fracture healing[J]. Materials Today Nano, 2023,21:100290. DOI: 10.1016/j.mtnano.2022.100290 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Zhang AM , Lenin P , Zeng RC ,et al. Advances in hydroxyapatite coatings on biodegradable magnesium and its alloys[J]. Journal of Magnesium and Alloys, 2022,10(5):1154-1170. DOI: 10.1016/j.jma.2022.01.001 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Li H , Qin Z , Ouyang Y ,et al. Hydroxyapatite/chitosan-metformin composite coating enhances the biocompatibility and osteogenic activity of AZ31 magnesium alloy[J]. Journal of Alloys and Compounds, 2022,909:164694. DOI: 10.1016/j.jallcom.2022.164694 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Lim HK , Byun SH , Lee JY ,et al. Radiological, histological, and hematological evaluation of hydroxyapatite-coated resorbable magnesium alloy screws placed in rabbit tibia[J]. J Biomed Mater Res B Appl Biomater, 2017,105(6):1636-1644. DOI: 10.1002/jbm.b.33703 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Sun J , Cai S , Sun J ,et al. Ultrasonic aqueous synthesis of corrosion resistant hydroxyapatite coating on magnesium alloys for the application of long-term implant[J]. Ultrason Sonochem, 2019,58:104677. DOI: 10.1016/j.ultsonch.2019.104677 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Yang J , Zhao Y , Dai J ,et al. Fabrication and growth mechanism of multilayered hydroxyapatite/organic composite coatings on the WE43 magnesium alloy[J]. Surface and Coatings Technology, 2023,452:129125. DOI: 10.1016/j.surfcoat.2022.129125 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Jiang D , Liu Y-Z , Li B ,et al. Insight into degradation and mechanical performance of polyelectrolytes-induced hydroxyapatite interlocking coating on Mg-3Nd-1Li-0.2Zn alloys[J]. Applied Surface Science, 2023,614:156041. DOI: 10.1016/j.apsusc.2022.156041 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Ji XJ , Gao L , Liu JC ,et al. Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys[J]. Colloids Surf B Biointerfaces, 2019,179:429-436. DOI: 10.1016/j.colsurfb.2019.04.029 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Lin Z , Wang T , Yu X ,et al. Functionalization treatment of micro-arc oxidation coatings on magnesium alloys: a review[J]. Journal of Alloys and Compounds, 2021,879:160453. DOI: 10.1016/j.jallcom.2021.160453 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Durdu S , Usta M . Characterization and mechanical properties of coatings on magnesium by micro arc oxidation[J]. Applied Surface Science, 2012,261:774-782. DOI: 10.1016/j.apsusc.2012.08.099 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Zhang G , Wu L , Serdechnova M ,et al. In-situ LDHs growth on PEO coatings on AZ31 magnesium alloy for active protection: Roles of PEO composition and conversion solution[J]. Journal of Magnesium and Alloys, 2021,11(7):2376-2391. DOI: 10.1016/j.jma.2021.09.001 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Rendenbach C , Fischer H , Kopp A ,et al. Improved in vivo osseointegration and degradation behavior of PEO surface-modified WE43 magnesium plates and screws after 6 and 12 months[J]. Mater Sci Eng C Mater Biol Appl, 2021,129:112380. DOI: 10.1016/j.msec.2021.112380 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Li CY , Fan XL , Zeng RC ,et al. Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA[J]. Journal of Materials Science & Technology, 2019,35(6):1088-1098. DOI: 10.1016/j.jmst.2019.01.006 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Li CY , Gao L , Fan XL ,et al. In vitro degradation and cytocompatibility of a low temperature in-situ grown self-healing Mg-Al LDH coating on MAO-coated magnesium alloy AZ31[J]. Bioact Mater, 2020,5(2):364-376. DOI: 10.1016/j.bioactmat.2020.02.008 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Zhang D , Zhou J , Peng F ,et al. Mg-Fe LDH sealed PEO coating on magnesium for biodegradation control, antibacteria and osteogenesis[J]. Journal of Materials Science & Technology, 2022,105:57-67. DOI: 10.1016/j.jmst.2021.05.088 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Du H , Zhang D , Xu R ,et al. Ferric oxide nanosheet-engineered Mg alloy for synergetic osteosarcoma photothermal/chemodynamic therapy[J]. Journal of Materials Science & Technology, 2023,138:203-213. DOI: 10.1016/j.jmst.2022.07.056 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Zhang D , Li M , Xu R ,et al. Complementary and synergistic design of bi-layered double hydroxides modified magnesium alloy toward multifunctional orthopedic implants[J]. Adv Healthc Mater, 2023,12(2):e2201367. DOI: 10.1002/adhm.202201367 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Liu L , Yang Q , Huang L ,et al. The effects of a phytic acid/calcium ion conversion coating on the corrosion behavior and osteoinductivity of a magnesium-strontium alloy[J]. Applied Surface Science, 2019,484:511-523. DOI: 10.1016/j.apsusc.2019.04.107 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Chen Y , Zhao S , Liu B ,et al. Corrosion-controlling and osteo-compatible Mg ion-integrated phytic acid (Mg-PA) coating on magnesium substrate for biodegradable implants application[J]. ACS Appl Mater Interfaces, 2014,6(22):19531-19543. DOI: 10.1021/am506741d .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Zhang R , Cai S , Xu G ,et al. Crack self-healing of phytic acid conversion coating on AZ31 magnesium alloy by heat treatment and the corrosion resistance[J]. Applied Surface Science, 2014,313:896-904. DOI: 10.1016/j.apsusc.2014.06.104 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Zhang M , Chen R , Liu X ,et al. Anticorrosion study of phytic acid ligand binding with exceptional self-sealing functionality[J]. Journal of Alloys and Compounds, 2020,818:152875. DOI: 10.1016/j.jallcom.2019.152875 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Xiong P , Jia Z , Zhou W ,et al. Osteogenic and pH stimuli-responsive self-healing coating on biomedical Mg-1Ca alloy[J]. Acta Biomater, 2019,92:336-350. DOI: 10.1016/j.actbio.2019.05.027 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Xia D , Jia Z , Shen Y ,et al. PH stimuli-responsive, rapidly self-healable coatings enhanced the corrosion resistance and osteogenic differentiation of Mg-1Ca osteoimplant[J]. Small, 2022,18(36):e2106056. DOI: 10.1002/smll.202106056 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Zhang W , Zhao S , Mo X ,et al. Mg ions incorporated phytic acid (PA) and zoledronic acid (ZA) of metal-organic complex coating on biodegradable magnesium for orthopedic implants application[J]. Surface and Coatings Technology, 2021,413:127075. DOI: 10.1016/j.surfcoat.2021.127075 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Lee JW , Han HS , Han KJ ,et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy[J]. Proc Natl Acad Sci U S A, 2016,113(3):716-721. DOI: 10.1073/pnas.1518238113 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Zhao D , Huang S , Lu F ,et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head[J]. Biomaterials, 2016,81:84-92. DOI: 10.1016/j.biomaterials.2015.11.038. .
返回引文位置Google Scholar
百度学术
万方数据
[47]
黄诗博,刘宇鹏,覃开蓉,. 可降解高纯度镁金属螺钉固定旋股外侧动脉横支大转子骨瓣治疗中青年股骨头缺血性坏死12例[J]. 中华显微外科杂志, 2022,45(4):411-417. DOI: 10.3760/cma.j.cn441206-20220512-00095 .
返回引文位置Google Scholar
百度学术
万方数据
Huang SB , Liu YP , Qin KR ,et al. Degradable high purity magnesium screw in fixing the greater trochanter bone flap pedicled with transverse branch of lateral circumflex femoral artery: treatment of avascular necrosis of femoral head in 12 young and middle-aged patients[J]. Chin J Microsurg, 2022,45(4):411-417. DOI: 10.3760/cma.j.cn441206-20220512-00095 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
备注信息
A
彭兆祥,Email: mocdef.labiamtohoaxzp
B
浙江省医药卫生科技计划项目 (2022KY1083)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号