实验研究
ENGLISH ABSTRACT
外泌体负载的KV11通过VDAC1和自噬机制对角膜新生血管的抑制作用
陈文倩
杜玮
于文贞
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20220402-00132
Inhibitory effect of exosome-loaded KV11 on corneal neovascularization via VDAC1 and autophagy
Chen Wenqian
Du Wei
Yu Wenzhen
Authors Info & Affiliations
Chen Wenqian
Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing 100044, China
Du Wei
Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing 100044, China
Yu Wenzhen
Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing 100044, China
·
DOI: 10.3760/cma.j.cn115989-20220402-00132
321
74
0
0
0
0
PDF下载
APP内阅读
摘要

目的探讨外泌体(EXO)负载的抗新生血管短肽KV11在角膜新生血管(CNV)中的作用及其机制。

方法利用EXO锚定肽CP05将KV11结合到血管内皮来源的EXO膜表面,形成EXO-KV11。通过Apogee纳米流式分析EXO负载KV11的效率和最佳浓度比。选取8周龄SPF级健康雄性SD大鼠100只,其中10只大鼠不做任何处理,为正常对照组;其余大鼠在建立碱烧伤诱导CNV大鼠模型后,采用随机数字表法随机将大鼠分为EXO-KV11组、KV11组和生理盐水组,每组各30只。从碱烧伤后第1天开始每隔1天,各组分别结膜下注射100 μl EXO-KV11(25 μg)、KV11(25 μg)或生理盐水。观察第1、4、7、14天时CNV的生成情况;采用荧光素心室灌注、角膜血管造影法计算CNV面积;采用苏木精-伊红染色法观察各组CNV管腔数量;采用免疫组织化学法检测角膜组织中CD31的表达分布;采用Western blot法检测电压依赖性阴离子通道1(VDAC1)和内质网应激、自噬及凋亡相关蛋白的表达水平。

结果Apogee流式分析确定KV11与EXO最佳浓度比为4∶1,EXO负载KV11效率高达87.5%。碱烧伤后7 d和14 d,各组CNV面积总体比较差异均有统计学意义( F=4.613、15.590,均 P<0.05),其中碱烧伤后7 d,EXO-KV11组CNV面积小于KV11组和生理盐水组;碱烧伤后14 d,EXO-KV11组和KV11组CNV面积均小于生理盐水组,EXO-KV11组CNV面积小于KV11组,差异均有统计学意义(均 P<0.05)。角膜荧光铺片定量分析结果显示,生理盐水组、KV11组和EXO-KV11组CNV相对荧光面积分别为(8.3±1.7)%、(5.2±1.6)%和(3.4±0.7)%,总体比较差异有统计学意义( F=11.735, P<0.01),其中KV11组和生理盐水组CNV相对荧光面积均大于EXO-KV11组,生理盐水组CNV相对荧光面积大于KV11组,差异均有统计学意义(均 P<0.05)。碱烧伤后14 d,生理盐水组基质内可见大量新生血管管腔;KV11组基质内新生血管管腔数量较生理盐水组少;EXO-KV11组角膜结构趋于正常,少见新生血管管腔。生理盐水组角膜基质内可见大量CD31染色阳性细胞,细胞围成大小不一的管腔结构;KV11组角膜基质内CD31染色阳性细胞围成的管腔数量较生理盐水组少,EXO-KV11组管腔数量较KV11组少。EXO-KV11组、KV11组、生理盐水组和正常对照组VDAC1、蛋白质激酶R样内质网激酶(PERK)、自噬接头蛋白(SQSTM1/p62)、活化半胱氨酸蛋白酶3(cleaved caspase 3)相对表达量总体比较差异均有统计学意义( F=35.960、8.947、17.791、101.168,均 P<0.01),其中EXO-KV11组VDAC1、PERK、p62、cleaved caspase 3相对表达量高于KV11组和生理盐水组,差异均有统计学意义(均 P<0.001)。各组自噬微管相关蛋白轻链3B(LC3B)Ⅱ/LC3BⅠ蛋白相对表达量总体比较,差异无统计学意义( F=0.445, P=0.727)。

结论与KV11相比,EXO-KV11可通过增加VDAC1表达、刺激PERK产生、抑制自噬流的发生等机制更有效地抑制CNV。

角膜新生血管;自噬;外泌体;纤溶酶原kringle 5;电压依赖性阴离子通道1
ABSTRACT

ObjectiveTo investigate the effects and mechanism of exosome (EXO)-loaded kringle V11 (KV11) delivery on corneal neovascularization (CNV).

MethodsKV11 was bound to the surface of endothelial cell-derived exosomes by using CP05, an EXO-targeting anchoring peptide, to produce EXO-KV11.The binding efficiency and optimal concentration ratio were determined using the Apogee flow system.A total of 100 8-week-old healthy male SPF grade SD rats were selected, 10 of which were randomly selected as a normal control group without any treatment.The CNV model was established by alkali burn in the other 90 rats, which were randomly divided into three groups, EXO-KV11 group, KV11 group, and normal saline group by the random number table method, with 30 rats in each group.Each group was injected subconjunctivally with 100 μl of EXO-KV11 (25 μg), KV11 (25 μg), or normal saline every other day from the first day after the alkali burn, respectively.The CNV of rats was observed on days 1, 4, 7, and 14 after alkali burn.The CNV area was calculated by ventricular perfusion with fluorescein isothiocyanate-dextran (FITC-dextran) and corneal angiography.The amount of CNV lumen was observed by hematoxylin and eosin staining.The distribution of CD31 in rat corneas was determined by immunohistochemical method.The expression levels of voltage-dependent anion channel 1(VDAC1), endoplasmic reticulum stress, autophagy and apoptosis-associated proteins were detected by Western blot.This study was approved by the Animal Ethics Committee of Peking University People's Hospital (No.20210019). All animal procedures complied with the regulations of the Vision and Ophthalmology Association and the Animal Protection and Use Committee of Peking University.

ResultsThe optimal concentration ratio of KV11 to EXO was 4∶1 and the binding affinity reached up to 87.5% by Apogee flow cytometers.On days 7 and 14 after alkali burn, there were significant differences in CNV area among the four groups ( F=4.613, 15.590; both at P<0.05). On day 7 after alkali burn, the CNV area was smaller in EXO-KV11 group than in KV11 and normal saline groups, with statistically significant differences (both at P<0.05). On day 14 after alkali burn, the CNV area was smaller in EXO-KV11 and KV11 groups than in normal saline group, and smaller in EXO-KV11 group than in KV11 group, showing statistically significant differences (all at P<0.05). The results of quantitative analysis of corneal fluorescence mounts showed that the relative CNV fluorescence area of the normal saline group, KV11 group and EXO-KV11 group were (8.3±1.7)%, (5.2±1.6)%and (3.4±0.7)%, respectively, showing a statistically significant overall comparison difference ( F=11.735, P<0.01). The relative CNV fluorescence area was larger in KV11 and normal saline groups than in EXO-KV11 group, and larger in normal saline group than in KV11 group, showing statistically significant differences (all at P<0.05). On day 14 after alkali burn, massive neovascular lumens were observed in the matrix of the normal saline group.The number of neovascular lumens in KV11 group was smaller than that in normal saline group.The corneal structure appeared normal in EXO-KV11 group, and neovascular lumens were rare.Numerous CD31-positive cells were observed in the corneal stroma of the normal saline group, which formed into lumen structures.The number of lumens surrounded by CD31-positive cells in the corneal stroma was smaller in KV11 group than in normal saline group, and smaller in EXO-KV11 group than in KV11 group.There were significant differences in the relative expression levels of VDAC1, protein kinase R-like endoplasmic reticulum kinase (PERK), p62, cleaved caspase 3 among the four groups ( F=35.960, 8.947, 17.791, 101.168; all at P<0.01). The relative expression levels of VDAC1, PERK, p62, cleaved caspase 3 were higher in EXO-KV11 group than in KV11 and normal saline groups, showing statistically significant differences (all at P<0.001). There was no significant difference in the relative expression of microtubule-associated proteins 1A/1B light chain 3B (LC3B)Ⅱ/LC3BⅠ protein among all four groups ( F=0.445, P=0.727).

ConclusionsEXO-KV11 can inhibit CNV more remarkably than KV11.EXO-KV11 inhibits CNV by promoting the expression of VDAC1 and PERK and suppressing the autophagic flux.

Corneal neovascularization;Autophagy;Exosomes;Plasminogen kringle 5;Voltage-dependent anion channel 1
Yu Wenzhen, Email: mocdef.aabnisuy_nehznew
引用本文

陈文倩,杜玮,于文贞. 外泌体负载的KV11通过VDAC1和自噬机制对角膜新生血管的抑制作用[J]. 中华实验眼科杂志,2024,42(02):108-116.

DOI:10.3760/cma.j.cn115989-20220402-00132

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
角膜是重要的屈光介质之一,无血管是其维持光学透明的主要原因之一 [ 1 , 2 ]。但在缺氧、炎症、创伤等情况下,角膜缘血管网的新生血管容易生长到角膜内,对角膜的透光性造成损害,从而导致视力下降,称为角膜新生血管(corneal neovascularization,CNV) [ 3 , 4 ]。现有的CNV治疗方法存在一定缺陷和局限性,如糖皮质激素诱导的青光眼、抗血管内皮生长因子(vascular endothelial growth cell,VEGF)药物对于成熟CNV效果较差、光动力疗法对周围角膜和角膜缘干细胞造成损害等 [ 2 , 5 ]。CNV治疗方法的部分有效性和相关不良反应提示我们,需要探索新的CNV治疗方法。Kringle结构域广泛存在于纤溶酶原和载脂蛋白中,在抑制血管生成中发挥关键作用,尤其是Kringle V(KV) [ 6 , 7 , 8 , 9 , 10 ]。KV可抑制胃癌、肝细胞癌和CNV等的形成 [ 11 , 12 , 13 ],KV来源的十一肽KV11(YTMNPRKLFDY)对视网膜新生血管具有明显抑制作用 [ 14 , 15 ]。然而,短肽存在不稳定、生物膜渗透性较差等缺点 [ 16 , 17 , 18 ]。因此,需要一种药物载体协助KV11在体内稳定发挥抑制血管生成的作用。外泌体(exosome,EXO)是各种细胞分泌的直径为30~150 nm的胞外囊泡 [ 19 , 20 ],可以作为药物的微载体直接将药物递送入细胞,增强药物稳定性,延长药物半衰期 [ 21 , 22 ]。Gao等 [ 23 ]研究发现了一种名为CP05的锚定肽,可以靶向EXO膜标记蛋白CD63,从而负载药物。Dong等 [ 24 ]利用CP05将KV11负载到EXO上,发现该系统可以通过侵袭性较低的方式较好地治疗视网膜新生血管。然而,EXO-KV11对CNV的作用及其机制尚不清楚。本研究拟探讨EXO负载抗新生血管短肽KV11在CNV中的作用和相关机制,以期为EXO-KV11可能的临床应用提供实验基础。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Zhong W Montana M Santosa SM et al. Angiogenesis and lymphangiogenesis in corneal transplantation-a review[J]Surv Ophthalmol 201863(4)∶453479. DOI: 10.1016/j.survophthal.2017.12.008 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Nicholas MP Mysore N Corneal neovascularization[J/OL]Exp Eye Res 2021202108363[2023-08-10]https://pubmed.ncbi.nlm.nih.gov/33221371/. DOI: 10.1016/j.exer.2020.108363 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Hsu CC Chang HM Lin TC et al. Corneal neovascularization and contemporary antiangiogenic therapeutics[J]J Chin Med Assoc 201578(6)∶323330. DOI: 10.1016/j.jcma.2014.10.002 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Mobaraki M Abbasi R Omidian Vandchali S et al. Corneal repair and regeneration:current concepts and future directions[J/OL]Front Bioeng Biotechnol 20197135[2023-08-10]https://pubmed.ncbi.nlm.nih.gov/31245365/. DOI: 10.3389/fbioe.2019.00135 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Giannaccare G Pellegrini M Bovone C et al. Anti-VEGF treatment in corneal diseases[J]Curr Drug Targets 202021(12)∶11591180. DOI: 10.2174/1389450121666200319111710 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Scanu AM Edelstein C Kringle-dependent structural and functional polymorphism of apolipoprotein (a)[J]Biochim Biophys Acta 19951256(1)∶112. DOI: 10.1016/0005-2760(95)00012-2 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Cao Y Chen A An SS et al. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth[J/OL]J Biol Chem 1997272(36)∶2292422928[2023-08-10]https://pubmed.ncbi.nlm.nih.gov/9278456/. DOI: 10.1074/jbc.272.36.22924 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Lin YL Tsai MJ Lo MJ et al. Evaluation of the antiangiogenic effect of kringle 1-5 in a rat glioma model[J]Neurosurgery 201270(2)∶479489discussion 489-490.DOI: 10.1227/NEU.0b013e31822f3aea .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Bian L Li Q Ji X Binding of angiogenesis inhibitor kringle 5 to its specific ligands by frontal affinity chromatography[J]J Chromatogr A 201514014251. DOI: 10.1016/j.chroma.2015.04.058 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Kalaivani V Jaleel A Apolipoprotein(a),an enigmatic anti-angiogenic glycoprotein in human plasma:a curse or cure?[J/OL]Pharmacol Res 2020158104858[2023-08-11]https://pubmed.ncbi.nlm.nih.gov/32430285/. DOI: 10.1016/j.phrs.2020.104858 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Zhang Z Ma JX Gao G et al. Plasminogen kringle 5 inhibits alkali-burn-induced corneal neovascularization[J]Invest Ophthalmol Vis Sci 200546(11)∶40624071. DOI: 10.1167/iovs.04-1330 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Yang X Cheng R Li C et al. Kringle 5 of human plasminogen suppresses hepatocellular carcinoma growth both in grafted and xenografted mice by anti-angiogenic activity[J]Cancer Biol Ther 20065(4)∶399405. DOI: 10.4161/cbt.5.4.2511 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Fang S Hong H Li L et al. Plasminogen kringle 5 suppresses gastric cancer via regulating HIF-1α and GRP78[J/OL]Cell Death Dis 20178(10)∶e3144[2023-08-11]https://pubmed.ncbi.nlm.nih.gov/29072683/. DOI: 10.1038/cddis.2017.528 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Yi ZF Cho SG Zhao H et al. A novel peptide from human apolipoprotein(a) inhibits angiogenesis and tumor growth by targeting c-Src phosphorylation in VEGF-induced human umbilical endothelial cells[J]Int J Cancer 2009124(4)∶843852. DOI: 10.1002/ijc.24027 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Zhao H Jin H Li Q et al. Inhibition of pathologic retinal neovascularization by a small peptide derived from human apolipoprotein(a)[J]Invest Ophthalmol Vis Sci 200950(11)∶53845395. DOI: 10.1167/iovs.08-3163 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Jain A Jain A Gulbake A et al. Peptide and protein delivery using new drug delivery systems[J]Crit Rev Ther Drug Carrier Syst 201330(4)∶293329. DOI: 10.1615/critrevtherdrugcarriersyst.2013006955 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Lee AC Harris JL Khanna KK et al. A comprehensive review on current advances in peptide drug development and design[J/OL]Int J Mol Sci 201920(10)∶2383[2023-08-12]https://pubmed.ncbi.nlm.nih.gov/31091705/. DOI: 10.3390/ijms20102383 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Tesauro D Accardo A Diaferia C et al. Peptide-based drug-delivery systems in biotechnological applications:recent advances and perspectives[J/OL]Molecules 201924(2)∶351[2023-08-12]https://pubmed.ncbi.nlm.nih.gov/30669445/. DOI: 10.3390/molecules24020351 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
林浩王颖间充质干细胞来源外泌体靶向修饰在眼病治疗中的应用前景[J]中华实验眼科杂志 202038(10)∶890894. DOI: 10.3760/cma.j.cn115989-20200319-00186 .
返回引文位置Google Scholar
百度学术
万方数据
Lin H Wang Y Modification of mesenchymal stem cell derived exosomes and its application prospects in the treatment of eye disease[J]Chin J Exp Ophthalmol 202038(10)∶890894. DOI: 10.3760/cma.j.cn115989-20200319-00186 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[20]
张慧张晓敏李筱荣外泌体在糖尿病视网膜病变中的研究进展[J]中华实验眼科杂志 202038(9)∶799803. DOI: 10.3760/cma.j.cn115989-20200424-00285 .
返回引文位置Google Scholar
百度学术
万方数据
Zhang H Zhang XM Li XR . Research progress of exosomes in diabetic retinopathy[J]Chin J Exp Ophthalmol 202038(9)∶799803. DOI: 10.3760/cma.j.cn115989-20200424-00285 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[21]
Elsharkasy OM Nordin JZ Hagey DW et al. Extracellular vesicles as drug delivery systems:why and how?[J]Adv Drug Deliv Rev 2020159332343. DOI: 10.1016/j.addr.2020.04.004 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Wang J Chen D Ho EA . Challenges in the development and establishment of exosome-based drug delivery systems[J]J Control Release 2021329894906. DOI: 10.1016/j.jconrel.2020.10.020 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Gao X Ran N Dong X et al. Anchor peptide captures,targets,and loads exosomes of diverse origins for diagnostics and therapy[J/OL]Sci Transl Med 201810(444)∶eaat0195[2023-08-13]https://pubmed.ncbi.nlm.nih.gov/29875202/. DOI: 10.1126/scitranslmed.aat0195 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Dong X Lei Y Yu Z et al. Exosome-mediated delivery of an anti-angiogenic peptide inhibits pathological retinal angiogenesis[J]Theranostics 202111(11)∶51075126. DOI: 10.7150/thno.54755 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Yuan K Zheng J Huang X et al. Neutrophil extracellular traps promote corneal neovascularization-induced by alkali burn[J/OL]Int Immunopharmacol 202088106902[2023-08-14]https://pubmed.ncbi.nlm.nih.gov/32829090/. DOI: 10.1016/j.intimp.2020.106902 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Sasaki H Yamamura K Tei C et al. Ocular permeability of FITC-dextran with absorption promoter for ocular delivery of peptide drug[J]J Drug Target 19953(2)∶129135. DOI: 10.3109/10611869509059212 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Feizi S Azari AA Safapour S Therapeutic approaches for corneal neovascularization[J/OL]Eye Vis (Lond) 2017428[2023-08-14]https://pubmed.ncbi.nlm.nih.gov/29234686/. DOI: 10.1186/s40662-017-0094-6 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Shao J Zaro J Shen Y Advances in exosome-based drug delivery and tumor targeting:from tissue distribution to intracellular fate[J]Int J Nanomedicine 20201593559371. DOI: 10.2147/IJN.S281890 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Meng W He C Hao Y et al. Prospects and challenges of extracellular vesicle-based drug delivery system:considering cell source[J]Drug Deliv 202027(1)∶585598. DOI: 10.1080/10717544.2020.1748758 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Gao X Zhao J Han G et al. Effective dystrophin restoration by a novel muscle-homing peptide-morpholino conjugate in dystrophin-deficient mdx mice[J]Mol Ther 201422(7)∶13331341. DOI: 10.1038/mt.2014.63 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Liang YK Bian LJ . Voltage-dependent anion channel-1,a possible ligand of plasminogen kringle 5[J/OL]PLoS One 201611(10)∶e0164834[2023-08-15]https://pubmed.ncbi.nlm.nih.gov/27749918/. DOI: 10.1371/journal.pone.0164834 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Gonzalez-Gronow M Kalfa T Johnson CE et al. The voltage-dependent anion channel is a receptor for plasminogen kringle 5 on human endothelial cells[J/OL]J Biol Chem 2003278(29)∶2731227318[2023-08-15]https://pubmed.ncbi.nlm.nih.gov/12736244/. DOI: 10.1074/jbc.M303172200 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Shoshan-Barmatz V Shteinfer-Kuzmine A Verma A VDAC1 at the intersection of cell metabolism,apoptosis,and diseases[J/OL]Biomolecules 202010(11)∶1485[2023-08-15]https://pubmed.ncbi.nlm.nih.gov/33114780/. DOI: 10.3390/biom10111485 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Senft D Ronai ZA . UPR,autophagy,and mitochondria crosstalk underlies the ER stress response[J]Trends Biochem Sci 201540(3)∶141148. DOI: 10.1016/j.tibs.2015.01.002 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Yin Y Sun G Li E et al. ER stress and impaired autophagy flux in neuronal degeneration and brain injury[J]Ageing Res Rev 201734314. DOI: 10.1016/j.arr.2016.08.008 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
于文贞,Email: mocdef.aabnisuy_nehznew
B

陈文倩:设计实验、实施研究、统计分析、起草文章;杜玮:设计实验、对文章知识性内容进行审阅和智力性内容修改;于文贞:直接参与选题、酝酿和设计实验、对文章的知识性内容作批评性审阅及定稿

C
所有作者均声明不存在任何利益冲突
D
北京市自然科学基金(京津冀基础研究合作专项) (J190005)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号