临床研究
ENGLISH ABSTRACT
基于深度学习的角膜活体共聚焦显微镜图像辅助识别系统的构建及应用
颜瑜琳
蒋维艳
程思敏
周奕文
于薏
郑碧清
杨燕宁
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20230101-00001
Construction and application of a deep learning-based assistant system for corneal in vivo confocal microscopy images recognition
Yan Yulin
Jiang Weiyan
Cheng Simin
Zhou Yiwen
Yu Yi
Zheng Biqing
Yang Yanning
Authors Info & Affiliations
Yan Yulin
Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
Jiang Weiyan
Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
Cheng Simin
Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
Zhou Yiwen
Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
Yu Yi
Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
Zheng Biqing
School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
Yang Yanning
Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
·
DOI: 10.3760/cma.j.cn115989-20230101-00001
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

目的构建基于深度学习的角膜活体共聚焦显微镜(IVCM)图像人工智能(AI)辅助识别系统,并评估其在临床上的应用价值。

方法采用诊断试验研究方法,收集2021年5月至2022年9月于武汉大学人民医院及武汉大学中南医院行IVCM检查的331例受试者18 860张角膜IVCM图像,经资深角膜专家对图像进行筛选分类后用于模型的训练及测试。模型包括低质量图像过滤模型、角膜图像诊断模型及角膜上皮层、前弹力层、基质层和内皮层4个层次识别模型,判断正常及异常角膜图像与对应角膜层次。选取360张独立于数据库的IVCM图像进行人机大赛,比较3位角膜专业高年资医师与人工智能对图片识别的准确度及用时。另选取8位未经过IVCM培训且临床经验少于3年的低年资医师对360张图像进行无模型辅助及模型辅助下识图,对2次评估结果进行差异分析以评估模型辅助效果。

结果本诊断模型筛选高质量图像的准确度为0.954,在内部及外部测试集中,识别角膜正常/异常图像的总体准确度分别为0.916和0.896;在识别正常及异常图像的角膜层次中,内部测试集的准确度分别达到了0.983及0.925,外部测试集分别达到了0.988及0.929。人机大赛中,模型总体的识别准确度为0.878,与3名高年资医师的平均准确度相近,且评估速度远高于高年资医师,约为其300倍。低年资医师经机器辅助后对图像正/异常及层次诊断的总体平均准确度为0.816±0.043,明显高于模型辅助前的0.669±0.061,差异有统计学意义( t=6.304, P<0.001)。

结论成功构建了一种基于深度学习的IVCM角膜图像辅助识别系统,可以较准确地分辨正常/异常图像并诊断图像对应角膜层次,能够提高临床诊断效率并辅助医师训练学习。

显微镜,共焦;角膜;人工智能;深度学习
ABSTRACT

ObjectiveTo construct an artificial intelligence (AI)-assisted system based on deep learning for corneal in vivo confocal microscopy (IVCM) image recognition and to evaluate its value in clinical applications.

MethodsA diagnostic study was conducted.A total of 18 860 corneal images were collected from 331 subjects who underwent IVCM examination at Renmin Hospital of Wuhan University and Zhongnan Hospital of Wuhan University from May 2021 to September 2022.The collected images were used for model training and testing after being reviewed and classified by corneal experts.The model design included a low-quality image filtering model, a corneal image diagnosis model, and a 4-layer identification model for corneal epithelium, Bowman membrane, stroma, and endothelium, to initially determine normal and abnormal corneal images and corresponding corneal layers.A human-machine competition was conducted with another 360 database-independent IVCM images to compare the accuracy and time spent on image recognition by three senior ophthalmologists and the AI system.In addition, 8 trainees without IVCM training and with less than three years of clinical experience were selected to recognize the same 360 images without and with model assistance to analyze the effectiveness of model assistance.This study adhered to the Declaration of Helsinki.The study protocol was approved by the Ethics Committee of Renmin Hospital of Wuhan University (No.WDRY2021-K148).

ResultsThe accuracy of this diagnostic model in screening high-quality images was 0.954.Its overall accuracy in identifying normal/abnormal corneal images was 0.916 and 0.896 in the internal and external test sets, respectively.Its accuracy reached 0.983, 0.925 in the internal test sets and 0.988, 0.929 in the external test sets in identifying corneal layers of normal and abnormal images, respectively.In the human-machine competition, the overall recognition accuracy of the model was 0.878, which was similar to the average accuracy of the three senior physicians and was approximately 300 times faster than the experts in recognition speed.Trainees assisted by the system achieved an accuracy of 0.816±0.043 in identifying corneal layers of normal and abnormal images, which was significantly higher than 0.669±0.061 without model assistance ( t=6.304, P<0.001).

ConclusionsA deep learning-based assistant system for corneal IVCM image recognition is successfully constructed.This system can discriminate normal/abnormal corneal images and diagnose the corresponding corneal layer of the images, which can improve the efficiency of clinical diagnosis and assist doctors in training and learning.

Microscopy, confocal;Cornea;Artificial intelligence;Deep learning
Yang Yanning, Email: mocdef.3ab61nyyhpo
引用本文

颜瑜琳,蒋维艳,程思敏,等. 基于深度学习的角膜活体共聚焦显微镜图像辅助识别系统的构建及应用[J]. 中华实验眼科杂志,2024,42(02):129-135.

DOI:10.3760/cma.j.cn115989-20230101-00001

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
角膜作为视觉形成的第一步,其透明度及屈光率可使光线折射进入眼内并聚焦于视网膜上,故角膜各层次的结构及功能损伤可导致视力下降,甚至致盲 [ 1 ]。角膜疾病,如颗粒状角膜营养不良、Fuchs角膜内皮营养不良等可主要损害角膜单一层次,而感染性角膜炎、角膜机械性损伤及眼化学伤等则可造成多层次,甚至全层角膜损伤 [ 2 ]。同时,糖尿病及类风湿性关节炎等全身疾病亦可对角膜造成影响 [ 3 ]。活体共聚焦显微镜( in vivo confocal microscopy,IVCM)作为一种非入侵性的成像工具,可从细胞层面观测角膜及其在病理状态下的结构变化,拥有实时、无创、可反复检查及高分辨率等优点 [ 4 ],对多种角膜疾病的临床诊断具有重要参考价值,临床应用已日渐广泛。对角膜微观结构变化进行监测也有助于优化角膜病的针对性管理及评估患者全身疾病预后 [ 5 , 6 ]。但在实际工作中,由于IVCM镜头单次可拍摄面积较小(400 μm×400 μm),详细评估角膜时需采集大量图像,人工分析非常费时费力并不可避免具有主观性 [ 7 ],且IVCM阅片也对医师的经验及相关专业知识具有一定要求,医师常常需要一定的培训周期才能区分角膜各层次形态及判断其是否正常。早期诊断对于角膜疾病的精准治疗及预防角膜盲均有重要意义 [ 8 ],据世界卫生组织统计,约80%的角膜盲可避免,而目前全球发达国家及发展中国家的眼科医师均存在短缺情况 [ 9 ],提高角膜图像阅片时的准确度以及诊断效率,可为临床及科研工作减负、提高医师工作效率并有望给予更多角膜病患者快速准确的诊疗。人工智能(artificial intelligence,AI)的不断进步正在改变各个医学领域的筛查、诊断及治疗方式 [ 10 ],AI在眼科疾病中的应用也在过去10年中有着显著发展。目前,AI在辅助IVCM图像中对角膜上皮细胞、角膜神经、角膜内皮细胞、真菌菌丝、树突状细胞及炎性细胞等多种结构的分割、量化及鉴别方面都取得了重大突破 [ 11 , 12 , 13 , 14 ],其阅片速度及准确度均表现出优秀的性能,然而目前尚无对于角膜层次判断及识别角膜图像正/异常的相关研究。本研究拟构建AI辅助下IVCM图像的自动诊断模型,探讨其在临床应用中的效能及用于角膜疾病智能筛查的可行性。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Kumar A Yun H Funderburgh ML et al. Regenerative therapy for the cornea[J/OL]Prog Retin Eye Res 202287101011[2023-06-10]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918435/. DOI: 10.1016/j.preteyeres.2021.101011 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Durand ML Barshak MB Chodosh J Infectious keratitis in 2021[J]JAMA 2021326(13)∶13191320. DOI: 10.1001/jama.2021.0424 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Wang EF Misra SL Patel DV . In vivo confocal microscopy of the human cornea in the assessment of peripheral neuropathy and systemic diseases [J/OL]Biomed Res Int 20152015951081[2023-06-10]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4685107/. DOI: 10.1155/2015/951081 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
顾绍峰彭荣梅肖格格共聚焦显微镜下后部多形性角膜营养不良的影像学特征[J]中华眼科杂志 202258(2)∶103111. DOI: 10.3760/cma.j.cn112142-20210228-00099 .
返回引文位置Google Scholar
百度学术
万方数据
Gu SF Peng RM Xiao GG et al. Imaging features of posterior polymorphous corneal dystrophy observed by in vivo confocal microscopy [J]Chin J Ophthalmol 202258(2)∶103111. DOI: 10.3760/cma.j.cn112142-20210228-00099 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[5]
Niederer RL McGhee CN . Clinical in vivo confocal microscopy of the human cornea in health and disease [J]Prog Retin Eye Res 201029(1)∶3058. DOI: 10.1016/j.preteyeres.2009.11.001 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Wajnsztajn D Nche E Solomon A Corneal complications of rheumatoid arthritis[J]Curr Opin Allergy Clin Immunol 202222(5)∶304313. DOI: 10.1097/ACI.0000000000000844 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Xu F Qin Y He W et al. A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images [J/OL]PLoS One 202116(6)∶e0252653[2023-06-12]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8174724/. DOI: 10.1371/journal.pone.0252653 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Jeng BH Ahmad S In pursuit of the elimination of corneal blindness:is establishing eye banks and training surgeons enough?[J]Ophthalmology 2021128(6)∶813815. DOI: 10.1016/j.ophtha.2020.06.042 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Li Z Jiang J Chen K et al. Preventing corneal blindness caused by keratitis using artificial intelligence[J/OL]Nat Commun 202112(1)∶3738[2023-06-12]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213803/. DOI: 10.1038/s41467-021-24116-6 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Kang L Ballouz D Woodward MA . Artificial intelligence and corneal diseases[J]Curr Opin Ophthalmol 202233(5)∶407417. DOI: 10.1097/ICU.0000000000000885 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Qu JH Qin XR Peng RM et al. A fully automated segmentation and morphometric parameter estimation system for assessing corneal endothelial cell images[J]Am J Ophthalmol 2022239142153. DOI: 10.1016/j.ajo.2022.02.026 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
McCarron ME Weinberg RL Izzi JM et al. Combining in vivo corneal confocal microscopy with deep learning-based analysis reveals sensory nerve fiber loss in acute simian immunodeficiency virus infection [J]Cornea 202140(5)∶635642. DOI: 10.1097/ICO.0000000000002661 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Mou L Qi H Liu Y et al. DeepGrading:deep learning grading of corneal nerve tortuosity[J]IEEE Trans Med Imaging 202241(8)∶20792091. DOI: 10.1109/TMI.2022.3156906 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Xu F Jiang L He W et al. The clinical value of explainable deep learning for diagnosing fungal keratitis using in vivo confocal microscopy images [J/OL]Front Med (Lausanne) 20218797616[2023-06-15]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8712475/. DOI: 10.3389/fmed.2021.797616 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
《眼科人工智能临床应用伦理专家共识(2023)》专家组中国医药教育协会数字影像与智能医疗分会中国医药教育协会智能医学专业委员会眼科人工智能临床应用伦理专家共识(2023)[J]中华实验眼科杂志 202341(1)∶17. DOI: 10.3760/cma.j.cn115989-20220905-00414 .
返回引文位置Google Scholar
百度学术
万方数据
Expert Workgroup of Expert consensus for ethics of clinical application of artificial intelligence in ophthalmology (2023)Digital Imaging and Intelligent Medicine Branch of China Medical Education AssociationIntelligent Medicine Special Committee of China Medical Education Association. Expert consensus for ethics of clinical application of artificial intelligence in ophthalmology (2023)[J]Chin J Exp Ophthalmol 202341(1)∶17. DOI: 10.3760/cma.j.cn115989-20220905-00414 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[16]
周奕文于薏周亚标睑板腺缺失面积的图像深度处理分析研究[J]中华眼科杂志 202056(10)∶774779. DOI: 10.3760/cma.j.cn112142-20200415-00272 .
返回引文位置Google Scholar
百度学术
万方数据
Zhou YW Yu Y Zhou YB et al. An advanced imaging method for measuring and assessing meibomian glands based on deep learning[J]Chin J Ophthalmol 202056(10)∶774779. DOI: 10.3760/cma.j.cn112142-20200415-00272 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[17]
Xie Y Zhao L Yang X et al. Screening candidates for refractive surgery with corneal tomographic-based deep learning[J]JAMA Ophthalmol 2020138(5)∶519526. DOI: 10.1001/jamaophthalmol.2020.0507 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Li Z Guo C Nie D et al. Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images[J/OL]Commun Biol 20203(1)∶15[2023-06-20]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949241/. DOI: 10.1038/s42003-019-0730-x .
返回引文位置Google Scholar
百度学术
万方数据
[19]
董秀清杜绍林刘华秀人工智能在社区糖尿病视网膜病变诊断及转诊中的应用[J]中华实验眼科杂志 202240(12)∶11581163. DOI: 10.3760/cma.j.cn115989-20220316-00108 .
返回引文位置Google Scholar
百度学术
万方数据
Dong XQ Du SL Liu HX et al. Application of artificial intelligence for community-based diabetic retinopathy detection and referral[J]Chin J Exp Ophthalmol 202240(12)∶11581163. DOI: 10.3760/cma.j.cn115989-20220316-00108 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[20]
Wong TY Bressler NM . Artificial intelligence with deep learning technology looks into diabetic retinopathy screening[J]JAMA 2016316(22)∶23662367. DOI: 10.1001/jama.2016.17563 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
张弛叶子李朝辉高度近视白内障患者人工晶状体计算公式的研究进展[J]中华实验眼科杂志 202240(5)∶466469. DOI: 10.3760/cma.j.cn115989-20200512-00341 .
返回引文位置Google Scholar
百度学术
万方数据
Zhang C Ye Z Li ZH . Advances in intraocular lens power calculation formulas in high myopia[J]Chin J Exp Ophthalmol 202240(5)∶466469. DOI: 10.3760/cma.j.cn115989-20200512-00341 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[22]
Yu Y Zhou Y Tian M et al. Automatic identification of meibomian gland dysfunction with meibography images using deep learning[J]Int Ophthalmol 202242(11)∶32753284. DOI: 10.1007/s10792-022-02262-0 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
于薏周奕文陈弟基于深层卷积神经网络的眼科B型超声图像玻璃体视网膜疾病辅助诊断系统应用评估[J]中华实验眼科杂志 202139(9)∶792797. DOI: 10.3760/cma.j.cn115989-20210114-00037 .
返回引文位置Google Scholar
百度学术
万方数据
Yu Y Zhou YW Chen D et al. Evaluation of an aided diagnosis system for vitreous and retinal diseases by analyzing B-scan ultrasound images based on deep convolutional neural network[J]Chin J Exp Ophthalmol 202139(9)∶792797. DOI: 10.3760/cma.j.cn115989-20210114-00037 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[24]
Tiwari M Piech C Baitemirova M et al. Differentiation of active corneal infections from healed scars using deep learning[J]Ophthalmology 2022129(2)∶139146. DOI: 10.1016/j.ophtha.2021.07.033 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Wei S Shi F Wang Y et al. A deep learning model for automated sub-basal corneal nerve segmentation and evaluation using in vivo confocal microscopy [J/OL]Transl Vis Sci Technol 20209(2)∶32[2023-06-20]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414615/. DOI: 10.1167/tvst.9.2.32 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Setu M Schmidt S Musial G et al. Segmentation and evaluation of corneal nerves and dendritic cells from in vivo confocal microscopy images using deep learning [J/OL]Transl Vis Sci Technol 202211(6)∶24[2022-06-23]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251793/. DOI: 10.1167/tvst.11.6.24 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
杨燕宁,Email: mocdef.3ab61nyyhpo
B

颜瑜琳:设计试验、实施研究、采集数据、分析/解释数据、文章撰写;蒋维艳:实施研究、采集数据、分析数据;程思敏:实施研究、采集数据;周奕文、于薏:设计试验、实施研究、采集数据;郑碧清:参与人工智能模型搭建及测试;杨燕宁:参与试验设计、文章审阅及定稿

C
所有作者均声明不存在利益冲突
D
国家自然科学基金 (81770899)
湖北省重点研发计划 (2020BCB055)
武汉大学人民医院交叉创新人才项目 (JCRCZN-2022-007)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号