综述
ENGLISH ABSTRACT
水凝胶制备人工角膜研究现状及展望
张彬彬
王雁 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20201012-00687
Research status and prospect of hydrogel preparation for artificial cornea
Zhang Binbin
Wang Yan
Authors Info & Affiliations
Zhang Binbin
School of Medicine, Nankai University, Tianjin Eye Hospital, Tianjin Key Lab.of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, China
Wang Yan
School of Medicine, Nankai University, Tianjin Eye Hospital, Tianjin Key Lab.of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, China
·
DOI: 10.3760/cma.j.cn115989-20201012-00687
645
118
0
0
1
2
PDF下载
APP内阅读
摘要

角膜移植是治疗严重角膜疾病的最终选择方式,但角膜供体短缺一直是阻碍角膜移植的主要问题,相对于传统的人工角膜制备方式,伴随着新材料、新技术、新业态出现的水凝胶为人工角膜的制备提供了可能。水凝胶类似于细胞外基质的等效物,具有较高的生物相容性、低免疫原性等特点,已在多个行业得到推广应用。水凝胶作为再生医学的重要材料,在药物研发、3D细胞培养、干细胞的研究、3D打印生物墨水等领域展现出强大的应用前景。可用于水凝胶的材料主要有透明质酸、明胶、海藻酸钠等,以水凝胶为材料结合不同的3D打印技术制备人工角膜已经进行大量的研究并取得了一定的技术和理论突破。本文对水凝胶结合3D打印在人工角膜制备方面的研究进展做一综述。

水凝胶;角膜;3D打印;眼科;组织工程;生物墨水
ABSTRACT

Currently, the dominating treatment of corneal blindness is corneal transplantation, but the shortage of corneal donors has been a major problem in corneal transplantation.Compared with the traditional preparation method of artificial cornea, with the emergence of new materials, new technologies and new commercial activities, hydrogel provides a new possibility for the preparation of artificial cornea.Hydrogel is similar to the equivalent of extracellular matrix, with high biocompatibility, low immunogenicity and other characteristics, so it has been popularized and applied in many industries.As an important material of regenerative medicine, hydrogel has shown a strong application prospect in pharmaceutical research, 3D cell culture, stem cell research, 3D printing bio-ink and other fields.The main materials used for generating hydrogels are hyaluronic acid, gelatin, sodium alginate, etc.A lot of researches on using hydrogels as materials combined with different 3D printing technologies to prepare artificial corneas have been carried out and certain technical and theoretical breakthroughs have been made.This article briefly reviewed the research progress of hydrogel combined with 3D printing in the preparation of artificial cornea.

Hydrogels;Cornea;Printing, three-dimensional;Ophthalmology;Tissue engineering;Bio-ink
Wang Yan, Email: mocdef.aabnis.piv3417naygnaw
引用本文

张彬彬,王雁. 水凝胶制备人工角膜研究现状及展望[J]. 中华实验眼科杂志,2024,42(02):198-201.

DOI:10.3760/cma.j.cn115989-20201012-00687

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
角膜与泪膜一起形成眼部外屏障并保护眼部不受外界环境和病原体侵扰,同时角膜也是眼部重要的屈光介质。角膜化学/热烧伤、单纯疱疹性角膜炎、大泡性角膜病变、角膜溃疡和Fuchs角膜内皮营养不良等角膜创伤和疾病都会影响角膜透明度,甚至造成视力丧失,是主要的致盲眼病。每年新报道的角膜盲病例超过150万例 [ 1 ],但由于供体组织短缺和移植手术费用高昂,可通过角膜移植治疗的不到5% [ 2 ]。穿透角膜移植术、前板层角膜移植术、角膜内皮移植术等手术是治疗角膜盲的主要方式。因角膜移植供体缺乏,研究者试图通过组织工程学的方法构建人工角膜,如人造角膜假体、动物脱细胞的角膜组织(例如猪角膜)和人羊膜等。用于制造人工角膜的生物材料必须具有与天然角膜相似的物理、生化、生理、生物学特性。水凝胶由于其独特的生物学特性现已成功应用于基于水凝胶的角膜接触镜、抗青光眼药物的输送、缓释型抗血管内皮生长因子药物的输送、玻璃体填充替代物等 [ 3 , 4 , 5 , 6 , 7 ]。本文就水凝胶结合3D打印在人工角膜制备方面的研究进展进行综述。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Islam MM Buznyk O Reddy JC et al. Biomaterials-enabled cornea regeneration in patients at high risk for rejection of donor tissue transplantation[J/OL]NPJ Regen Med 201832[2023-06-10]https://pubmed.ncbi.nlm.nih.gov/29423280/. DOI: 10.1038/s41536-017-0038-8 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Gain P Jullienne R He Z et al. Global survey of corneal transplantation and eye banking[J]JAMA Ophthalmol 2016134(2)∶167173. DOI: 10.1001/jamaophthalmol.2015.4776 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Childs A Li H Lewittes DM et al. Fabricating customized hydrogel contact lens[J/OL]Sci Rep 2016634905[2023-06-10] https://pubmed.ncbi.nlm.nih.gov/2 7748361/ . DOI: 10.1038/srep34905 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Jung HJ Abou-Jaoude M Carbia BE et al. Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses[J]J Control Release 2013165(1)∶8289. DOI: 10.1016/j.jconrel.2012.10.010 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Seah I Zhao XX Lin Q et al. Response to ' Comment on: " Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseases " ' [J]Eye (Lond) 202135(3)∶10261027. DOI: 10.1038/s41433-020-0983-0 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Feng S Chen H Liu Y et al. A novel vitreous substitute of using a foldable capsular vitreous body injected with polyvinylalcohol hydrogel[J/OL]Sci Rep 201331838[2023-06-10]https://pubmed.ncbi.nlm.nih.gov/23670585/. DOI: 10.1038/srep01838 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Liu Z Liow SS Lai SL et al. Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade[J]Nat Biomed Eng 20193(8)∶598610. DOI: 10.1038/s41551-019-0382-7 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Peppas NA Bures P Leobandung W et al. Hydrogels in pharmaceutical formulations[J]Eur J Pharm Biopharm 200050(1)∶2746. DOI: 10.1016/s0939-6411(00)00090-4 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Fu Y Kao WJ . In situ forming poly (ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition[J]J Biomed Mater Res A 201198(2)∶201211. DOI: 10.1002/jbm.a.33106 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Van Vlierberghe S Dubruel P Schacht E Biopolymer-based hydrog els as scaffolds for tissue engineering applications:a review [J]Biomacromolecules 201112(5)∶13871408. DOI: 10.1021/bm200083n .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Drury JL Mooney DJ . Hydrogels for tissue engineering:scaffold design variables and applications[J]Biomaterials 200324(24)∶43374351. DOI: 10.1016/s0142-9612(03)00340-5 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Saldin LT Cramer MC Velankar SS et al. Extracellular matrix hydrogels from decellularized tissues:structure and function[J]Acta Biomater 201749115. DOI: 10.1016/j.actbio.2016.11.068 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Yazdani M Shahdadfar A Jackson CJ et al. Hyaluronan-based hydrogel scaffolds for limbal stem cell transplantation:a review[J/OL]Cells 20198(3)∶245[2023-06-11]https://pubmed.ncbi.nlm.nih.gov/30875861/. DOI: 10.3390/cells8030245 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Burdick JA Prestwich GD . Hyaluronic acid hydrogels for biomedical applications[J]Adv Mater 201123(12)∶H4156. DOI: 10.1002/adma.201003963 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Fraser JR Laurent TC Laurent UB . Hyaluronan:its nature,distribution,functions and turnover[J]J Intern Med 1997242(1)∶2733. DOI: 10.1046/j.1365-2796.1997.00170.x .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Fiorica C Senior RA Pitarresi G et al. Biocompatible hydrogels based on hyaluronic acid cross-linked with a polyaspartamide derivative as delivery systems for epithelial limbal cells[J]Int J Pharm 2011414(1-2)∶104111. DOI: 10.1016/j.ijpharm.2011.05.002 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Sudha PN Rose MH . Beneficial effects of hyaluronic acid[J]Adv Food Nutr Res 201472137176. DOI: 10.1016/B978-0-12-800269-8.00009-9 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Liu Y Chan-Park MB . A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture[J]Biomaterials 201031(6)∶11581170. DOI: 10.1016/j.biomaterials.2009.10.040 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Van den Steen PE Dubois B Nelissen I et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9)[J]Crit Rev Biochem Mol Biol 200237(6)∶375536. DOI: 10.1080/10409230290771546 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Van Den Bulcke AI Bogdanov B De Rooze N et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels[J]Biomacromolecules 20001(1)∶3138. DOI: 10.1021/bm990017d .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Wright B Cave RA Cook JP et al. Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel[J]Regen Med 20127(3)∶295307. DOI: 10.2217/rme.12.7 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Seok JM Oh SH Sang JL et al. Fabrication and characterization of 3D scaffolds made from blends of sodium alginate and poly (vinyl alcohol)[J]Mater Today Commun 2019195661. DOI: org/10.1016/j.mtcomm.2018.09.013 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Augst AD Kong HJ Mooney DJ . Alginate hydrogels as biomaterials[J]Macromol Biosci 20066(8)∶623633. DOI: 10.1002/mabi.200600069 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Hynes RO Naba A Overview of the matrisome—an inventory of extracellular matrix constituents and functions[J/OL]Cold Spring Harb Perspect Biol 20124(1)∶a004903[2023-06-12]https://pubmed.ncbi.nlm.nih.gov/21937732/. DOI: 10.1101/cshperspect.a004903 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Marchand M Monnot C Muller L et al. Extracellular matrix scaffolding in angiogenesis and capillary homeostasis[J]Semin Cell Dev Biol 201989147156. DOI: 10.1016/j.semcdb.2018.08.007 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Taylor DA Sampaio LC Ferdous Z et al. Decellularized matrices in regenerative medicine[J]Acta Biomater 2018747489. DOI: 10.1016/j.actbio.2018.04.044 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Shirzaei Sani E Kheirkhah A Rana D et al. Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels[J/OL]Sci Adv 20195(3)∶eaav1281[2023-06-12]https://pubmed.ncbi.nlm.nih.gov/30906864/. DOI: 10.1126/sciadv.aav1281 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Chen F Le P Lai K et al. Simultaneous interpenetrating polymer network of collagen and hyaluronic acid as an in situ-forming corneal defect filler[J]Chem Mater 202032(12)∶52085216. DOI: 10.1021/acs.chemmater.0c01307 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Zheng LL Vanchinathan V Dalal R et al. Biocompatibility of poly (ethylene glycol) and poly (acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea[J]J Biomed Mater Res A 2015103(10)∶31573165. DOI: 10.1002/jbm.a.35453 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Ahearne M Lynch AP . Early observation of extracellular matrix-derived hydrogels for corneal stroma regeneration[J]Tissue Eng Part C Methods 201521(10)∶10591069. DOI: 10.1089/ten.TEC.2015.0008 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Uyanıklar M Günal G Tevlek A et al. Hybrid cornea:cell laden hydrogel incorporated decellularized matrix[J]ACS Biomater Sci Eng 20206(1)∶122133. DOI: 10.1021/acsbiomaterials.9b01286 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Wang F Shi W Li H et al. Decellularized porcine cornea-derived hydrogels for the regeneration of epithelium and stroma in focal corneal defects[J]Ocul Surf 202018(4)∶748760. DOI: 10.1016/j.jtos.2020.07.020 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Do AV Khorsand B Geary SM et al. 3D printing of scaffolds for tissue regeneration applications[J]Adv Healthc Mater 20154(12)∶17421762. DOI: 10.1002/adhm.201500168 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Tack P Victor J Gemmel P et al. 3D-printing techniques in a medical setting:a systematic literature review[J/OL]Biomed Eng Online 201615(1)∶115[2023-06-13]https://pubmed.ncbi.nlm.nih.gov/27769304/. DOI: 10.1186/s12938-016-0236-4 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Gungor-Ozkerim PS Inci I Zhang YS et al. Bioinks for 3D bioprinting:an overview[J]Biomater Sci 20186(5)∶915946. DOI: 10.1039/c7bm00765e .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Cui X Boland T <x>D</x> <x>'</x> <x>Lima</x> DD et al. Thermal inkjet printing in tissue engineering and regenerative medicine[J]Recent Pat Drug Deliv Formul 20126(2)∶149155. DOI: 10.2174/187221112800672949 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Murphy SV Atala A 3D bioprinting of tissues and organs[J]Nat Biotechnol 201432(8)∶773785. DOI: 10.1038/nbt.2958 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Knowlton S Anand S Shah T et al. Bioprinting for neural tissue engineering[J]Trends Neurosci 201841(1)∶3146. DOI: 10.1016/j.tins.2017.11.001 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Mondschein RJ Kanitkar A Williams CB et al. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds[J]Biomaterials 2017140170188. DOI: 10.1016/j.biomaterials.2017.06.005 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Huang Q Zou Y Arno MC et al. Hydrogel scaffolds for differentiation of adipose-derived stem cells[J]Chem Soc Rev 201746(20)∶62556275. DOI: 10.1039/c6cs00052e .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Sorkio A Koch L Koivusalo L et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks[J]Biomaterials 20181715771. DOI: 10.1016/j.biomaterials.2018.04.034 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Ulag S Ilhan E Sahin A et al. 3D printed artificial cornea for corneal stromal transplantation[J/OL]Eur Polym J 2020133109744[2023-06-13]https://www.sciencedirect.com/science/article/abs/pii/S0014305720301518. DOI: 10.1016/j.eurpolymj.2020.109744 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Kilic Bektas C Hasirci V Cell loaded 3D bioprinted GelMA hydrogels for corneal stroma engineering[J]Biomater Sci 20198(1)∶438449. DOI: 10.1039/c9bm01236b .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Kim H Jang J Park J et al. Shear-induced alignment of collagen fibrils using 3D cell printing for corneal stroma tissue engineering[J/OL]Biofabrication 201911(3)∶035017[2023-06-13]https://pubmed.ncbi.nlm.nih.gov/30995622/. DOI: 10.1088/1758-5090/ab1a8b .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Isaacson A Swioklo S Connon CJ . 3D bioprinting of a corneal stroma equivalent[J]Exp Eye Res 2018173188193. DOI: 10.1016/j.exer.2018.05.010 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Zhang B Xue Q Hu HY et al. Integrated 3D bioprinting-based geometry-control strategy for fabricating corneal substitutes[J]J Zhejiang Univ Sci B 201920(12)∶945959. DOI: 10.1631/jzus.B1900190 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Kutlehria S Dinh TC Bagde A et al. High-throughput 3D bioprinting of corneal stromal equivalents[J]J Biomed Mater Res B Appl Biomater 2020108(7)∶29812994. DOI: 10.1002/jbm.b.34628 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
王雁,Email: mocdef.aabnis.piv3417naygnaw
B
所有作者均声明不存在利益冲突
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号