综述
ENGLISH ABSTRACT
人工智能在临床实践中的创新应用和伦理挑战
于兰亦
翟晓梅
作者及单位信息
·
DOI: 10.3760/cma.j.cn101909-20231127-00073
Innovative applications and ethical challenges of artificial intelligence in clinical practice
Yu Lanyi
Zhai Xiaomei
Authors Info & Affiliations
Yu Lanyi
Chinese Academy of Medical Sciences and Peking Union Medical College; School of Population Medicine and Public Health, Beijing 100730, China
Zhai Xiaomei
Chinese Academy of Medical Sciences and Peking Union Medical College; School of Population Medicine and Public Health, Beijing 100730, China
·
DOI: 10.3760/cma.j.cn101909-20231127-00073
1180
307
0
1
7
1
PDF下载
APP内阅读
摘要

人工智能(AI)在医学与健康领域被广泛视为具有巨大潜力,将可能从根本上改变医疗方式和决策模式。尽管诸如基于规则的专家系统、机器学习和自然语言模型等技术已在临床实践中有所应用,但广泛部署医疗AI仍面临诸多技术难题和伦理挑战。当前,AI在临床医学领域的应用处于早期阶段,尚未对临床诊疗产生重大影响,但随着医学领域AI的迅猛发展,这个“机会窗口”正在逐渐关闭。本文旨在探讨AI在临床实践中的应用进展和新兴潜力,重点分析其应用所面临的伦理挑战,包括数据隐私安全与偏倚、数字鸿沟与健康不公平、可解释AI与自主决策,以及错误风险与责任转移问题,并提出相应对策,以期为我国医学AI相关政策的制定提供理论依据和决策支持。

人工智能;机器学习;临床应用;新兴技术;伦理
ABSTRACT

Artificial intelligence (AI) is widely seen as having great potential in the field of medicine and health, with the possibility to fundamentally transform medical care and clinical decision-making. Despite technologies such as rule-based expert systems, machine learning, and natural language models being applied in clinical practice, the widespread deployment of AI in healthcare still faces numerous technical challenges and ethical debates. Still, in its early stage of development, it has not had a significant impact on clinical diagnostics and treatment. However, with the rapid progression of AI in medicine, this"window of opportunity"is gradually closing. This study aims to explore the application progress and emerging potential of AI in clinical practice; analyze the ethical challenges, including data privacy and bias, digital divide and health inequities, explainable AI and autonomous decision-making and the incorrect risk and responsibility shift; put forward corresponding countermeasures; to provide theoretical groundwork and evidence for the policy-making related to medical AI in China.

Artificial intelligence;Machine learning;Clinical application;Emerging technologies;Ethics
Zhai Xiaomei, Email: nc.defudabe.cmupiahzmx
引用本文

于兰亦,翟晓梅. 人工智能在临床实践中的创新应用和伦理挑战[J]. 数字医学与健康,2024,02(02):108-112.

DOI:10.3760/cma.j.cn101909-20231127-00073

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
人工智能(artificial intelligence,AI)被视为工业革命的第四次浪潮,是一场类似于人类历史中蒸汽机、电气和数字技术革命的新一轮产业、社会和文明的全球性变革 1。AI驱动的科学研究也被称为是继经验范式、理论范式、计算范式、数据驱动范式后的“第五范式”,并将从根本上改变医疗方式和决策模式 2。2020年11月,一篇发表在 Nature杂志上的文章表明,AI已经能够以92%的准确率预测蛋白质的结构 3。这不仅意味着科学挑战的革命性进展,也标志着生命科学领域将迎来更多的突破。可以说,人脸识别和自动驾驶技术仅是AI应用领域的冰山一角,而在生命医学领域,AI的应用将掀起更为汹涌的浪潮。
近年来,AI和机器学习在医学领域的应用,以及这些应用的伦理学研究都受到广泛关注 4。虽然AI在医学和健康领域仍处于验证和实施的早期阶段,相对来说尚未在临床一线的诊疗工作中产生重大的影响,但随着医学和健康领域AI的迅猛发展,这个“机会窗口”正在迅速关闭 5。在颠覆性新兴技术的实践中,伦理可辩护性是技术可行的决定性因素。对于医学这一直接关乎人们生命健康和尊严的领域来说,伦理的重要性不言而喻。在AI真正大范围应用于真实世界和临床实践前,伦理规制至关重要 6
目前,我国对AI的监管分布在多个法律法规和规范性文件之中,如《网络安全法》《数据安全法》《个人信息保护法》,以及《互联网信息服务算法推荐管理规定》《生成式人工智能服务暂行管理办法》等。此外,AI领域的伦理治理也备受关注。2022年3月中共中央办公厅、国务院办公厅印发《关于加强科技伦理治理的意见》,提出将AI、生命科学、医学作为国家“十四五”期间的3个重点领域。2023年9月科技部等十部门联合印发的《科技伦理审查办法(试行)》也将AI相关开发部署列入专家复核清单。这一系列规制对于引导AI健康发展具有重要意义。但需要指出的是,现有规范对于医学AI的直接规范价值仍十分有限,尚不足以规制和监管AI在临床实践的创新应用。
正是在这种背景下,我们探讨了AI在临床实践中的研究进展和新兴应用,重点分析了临床实践中AI应用的伦理挑战,以期支持决策讨论,进而引导更为完善的政策制定和负责任的战略部署。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
KlausSchwab. The Fourth Industrial Revolution: what it means, how to respond[EB/OL]//World Economic Forum.( 2016-01-14). https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/.
返回引文位置Google Scholar
百度学术
万方数据
[2]
Zhang J , Zhang ZM . Ethics and governance of trustworthy medical artificial intelligence[J]. BMC Med Inform Decis Mak, 2023,23(1):7. DOI: 10.1186/s12911-023-02103-9 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Callaway E . ′It will change everything′: DeepMind′s AI makes gigantic leap in solving protein structures[J]. Nature, 2020,588(7837):203-204. DOI: 10.1038/d41586-020-03348-4 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
McCradden MD , Stephenson EA , Anderson JA . Clinical research underlies ethical integration of healthcare artificial intelligence[J]. Nat Med, 2020,26(9):1325-1326. DOI: 10.1038/s41591-020-1035-9 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Topol EJ . High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med, 2019,25(1):44-56. DOI: 10.1038/s41591-018-0300-7 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Wu F , Lu C , Zhu M ,et al. Towards a new generation of artificial intelligence in China[J]. Nature Machine Intelligence, 2020,2(6):312-316. DOI: 10.1038/s42256-020-0183-4 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Sahni NR , Carrus B . Artificial Intelligence in U.S. Health Care Delivery[J]. N Engl Med, 2023,389(4):348-358. DOI: 10.1056/NEJMra2204673 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Al Kuwaiti A , Nazer K , Al-Reedy A ,et al. A review of the role of artificial intelligence in healthcare[J]. J Pers Med, 2023,13(6):951. DOI: 10.3390/jpm13060951 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Vial A , Stirling D , Field M ,et al. The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review [J]. Transl Cancer Res, 2018,7(3):803-816. DOI: 10.21037/tcr.2018.05.02 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Rajpurkar P , Chen E , Banerjee O ,et al. AI in health and medicine[J]. Nat Med, 2022,28(1):31-38. DOI: 10.1038/s41591-021-01614-0 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Courtiol P , Maussion C , Moarii M ,et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome[J]. Nat Med, 2019,25(10):1519-1525. DOI: 10.1038/s41591-019-0583-3 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Zhou D , Tian F , Tian X ,et al. Diagnostic evaluation of a deep learning model for optical diagnosis of colorectal cancer[J]. Nat Commun, 2020,11(1):2961. DOI: 10.1038/s41467-020-16777-6 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Farzaneh N , Ansari S , Lee E ,et al. Collaborative strategies for deploying artificial intelligence to complement physician diagnoses of acute respiratory distress syndrome[J]. NPJ Digit Med, 2023,6(1):62. DOI: 10.1038/s41746-023-00797-9 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Dembrower K , Crippa A , Colón E ,et al. Artificial intelligence for breast cancer detection in screening mammography in Sweden: a prospective, population-based, paired-reader, non-inferiority study[J]. Lancet Digit Health, 2023,5(10):e703-e711. DOI: 10.1016/S2589-7500(23)00153-X .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Porter P , Abeyratne U , Swarnkar V ,et al. A prospective multicentre study testing the diagnostic accuracy of an automated cough sound centred analytic system for the identification of common respiratory disorders in children[J]. Respir Res, 2019,20(1):81. DOI: 10.1186/s12931-019-1046-6 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Moor M , Banerjee O , Abad Z ,et al. Foundation models for generalist medical artificial intelligence[J]. Nature, 2023,616(7956):259-265. DOI: 10.1038/s41586-023-05881-4 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
NEWS BBC . DeepMind faces legal action over NHS data use[EB/OL]. [ 2021-10-01]. https://www.bbc.com/news/technology-58761324.
返回引文位置Google Scholar
百度学术
万方数据
[18]
Obermeyer Z , Powers B , Vogeli C ,et al. Dissecting racial bias in an algorithm used to manage the health of populations[J]. Science, 2019,366(6464):447-453. DOI: 10.1126/science.aax2342 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
World Health Organization. Health Equity[EB/OL]. [ 2024-01-21]. https://www.who.int/health-topics/health-equity#tab=tab_1.
返回引文位置Google Scholar
百度学术
万方数据
[20]
Badal K , Lee CM , Esserman LJ . Guiding principles for the responsible development of artificial intelligence tools for healthcare[J]. Commun Med (Lond), 2023,3(1):47. DOI: 10.1038/s43856-023-00279-9 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Mittermaier M , Raza M , Kvedar JC . Collaborative strategies for deploying AI-based physician decision support systems: challenges and deployment approaches[J]. NPJ Digit Med, 2023,6(1):137. DOI: 10.1038/s41746-023-00889-6 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Finlayson SG , Subbaswamy A , Singh K ,et al. The clinician and dataset shift in artificial intelligence[J]. N Engl J Med, 2021,385(3):283-286. DOI: 10.1056/NEJMc2104626 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Tiwari R . Explainable AI (XAI) and its Applications in building trust and understanding in AI decision making[J]. International J Sci Res. Eng. Manag, 2023,7(1):1-13. DOI: 10.55041/IJSREM17592 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Davenport TH , Hongsermeier T , Mc Cord KA . Using AI to improve electronic health records[EB/OL]. ( 2018-12-13). https://hbr.org/2018/12/using-ai-to-improve-electronic-health-records.
返回引文位置Google Scholar
百度学术
万方数据
[25]
Davenport T , Kalakota R . The potential for artificial intelligence in healthcare[J]. Future healthcare journal, 2019,6(2):94.
返回引文位置Google Scholar
百度学术
万方数据
[26]
Diprose WK , Buist N , Hua N ,et al. Physician understanding, explainability, and trust in a hypothetical machine learning risk calculator[J]. Journal of the American Medical Informatics Association, 2020,27(4):592-600.
返回引文位置Google Scholar
百度学术
万方数据
[27]
Esteva A , Chou K , Yeung S ,et al. Deep learning-enabled medical computer vision[J]. NPJ Digit Med, 2021,4(1):5. DOI: 10.1038/s41746-020-00376-2 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Caruana R , Lou Y , Gehrke J ,et al. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission[C]//Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. 2015:1721-1730. https://www.semanticscholar.org/paper/Intelligible-Models-for-HealthCare%3A-Predicting-Risk-Caruana-Lou/cb030975a3dbcdf52a01cbd1c140711332313e13. DOI: 10.1145/2783258.2788613 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Zhang J , Zhang ZM . Ethics and governance of trustworthy medical artificial intelligence[J]. BMC Med Inform Decis Mak, 2023,23(1):7. DOI: 10.1186/s12911-023-02103-9 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
The Lancet. AI in medicine: creating a safe and equitable future[J]. Lancet, 2023,402(10401):503.
返回引文位置Google Scholar
百度学术
万方数据
[31]
Kundu S . AI in medicine must be explainable[J]. Nat Med, 2021,27(8):1328. DOI: 10.1038/s41591-021-01461-z .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Rajpurkar P , Lungren MP . The Current and Future State of AI Interpretation of Medical Images[J]. N Engl J Med, 2023,388(21):1981-1990. DOI: 10.1056/NEJMra2301725 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Moor M , Banerjee O , Abad Z ,et al. Foundation models for generalist medical artificial intelligence[J]. Nature, 2023,616(7956):259-265. DOI: 10.1038/s41586-023-05881-4 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
翟晓梅,Email: nc.defudabe.cmupiahzmx
B
于兰亦, 翟晓梅. 人工智能在临床实践中的创新应用和伦理挑战[J]. 数字医学与健康, 2024, 2(2): 108-112. DOI: 10.3760/cma.j.cn101909-20231127-00073.
C
所有作者声明无利益冲突
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号