综述
ENGLISH ABSTRACT
基于类器官的视网膜色素变性疾病模型构建及研究进展
谢林瑶
陈建苏 [综述]
郭永龙 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20230808-00061
Construction and research progress of organoid models for retinitis pigmentosa
Xie Linyao
Chen Jiansu
Guo Yonglong
Authors Info & Affiliations
Xie Linyao
School of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, China
Chen Jiansu
School of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, China
Guo Yonglong
College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
·
DOI: 10.3760/cma.j.cn115989-20230808-00061
612
74
0
0
0
1
PDF下载
APP内阅读
摘要

基于多能干细胞定向诱导分化视网膜类器官(RO)技术可以高度模拟人类视网膜的发育过程,帮助深入理解视网膜的发育机制,并为视网膜疾病提供新的治疗方法。目前,RO广泛应用于视网膜疾病的机制和治疗研究,尤其在视网膜色素变性(RP)中取得了较为突出的进展。本文总结了利用人多功能干细胞制备RO的方法,阐述了RO-RP疾病模型在 PRPF31RPGRCRB1RP2IMPG2NR2E3USH2APDE6BTRNT1等不同突变基因中的机制与治疗应用,概括其在药物筛选、药物毒性试验、基因疗法和细胞疗法方面的研究进展,讨论了RO的研究及应用挑战。

视网膜类器官;视网膜色素变性;疾病模型
ABSTRACT

After more than ten years of development, retinal organoid (RO) based on pluripotent stem cells can highly simulate the development process of human retina, provide insight into the mechanism of retinal development and provide new treatments for retinal diseases.At present, RO has been widely used in the research of the mechanism and treatment of retinal diseases, especially in retinitis pigmentosa (RP).This review summarizes the methods of preparing RO from human pluripotent stem cells, and elaborates the mechanism and therapeutic application of RO-RP disease model in different mutated genes such as PRPF31, RPGR, CRB1, RP2, IMPG2, NR2E3, USH2A, PDE6B and TRNT1, as well as the research progress of RO in drug screening, drug toxicity testing, gene therapy and cell therapy, and discusses the research and application challenges of RO.

Retinal organoids;Retinitis pigmentosa;Disease model
Guo Yonglong, Email: nc.defudabe.uacsgnulgniw
引用本文

谢林瑶,陈建苏,郭永龙. 基于类器官的视网膜色素变性疾病模型构建及研究进展[J]. 中华实验眼科杂志,2024,42(05):473-477.

DOI:10.3760/cma.j.cn115989-20230808-00061

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
视网膜位于眼球壁内层,由色素上皮层和神经层组成。神经层主要包含视杆细胞和视锥细胞2种感光细胞以及双极细胞、神经节细胞、水平细胞和无长突细胞4种神经元。进化级别较低的脊椎动物,如两栖动物和斑马鱼等,具有强大的视网膜再生能力,而哺乳动物的视网膜几乎无法再生 [ 1 ]。人类视网膜一旦受损或发生病变,难以自我修复或者再生。目前,视网膜疾病,如年龄相关性黄斑变性、视网膜色素变性(retinitis pigmentosa,RP)、视网膜母细胞瘤等,是导致视力受损和盲的重要原因。由于缺乏相应的模型,视网膜疾病的治疗是现代医学面临的重大难题。
类器官是一类由干细胞和肿瘤组织细胞等,在体外进行培养,形成与来源器官组织基因、结构和功能相似的细胞培养物 [ 2 ]。由多能干细胞(induced pluripotent stem cells,iPSCs)定向分化来源的视网膜类器官(retinal organoid,RO)具备无限来源的优势且几乎没有伦理问题,可以为视网膜发育机制研究和疾病研究提供良好的体外模型 [ 3 ]。RO几乎包含所有主要的视网膜特异性细胞类型,能够表现视网膜的主要形态和功能 [ 4 ]。本文总结了RO的分化方案,以及其作为RP疾病模型的研究及应用进展。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Karl MO Reh TA . Regenerative medicine for retinal diseases:activating endogenous repair mechanisms[J]. Trends Mol Med 201016(4)∶193202. DOI: 10.1016/j.molmed.2010.02.003 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Rossi G Manfrin A Lutolf MP . Progress and potential in organoid research[J]. Nat Rev Genet 201819(11)∶671687. DOI: 10.1038/s41576-018-0051-9 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Zhang X Wang W Jin ZB . Retinal organoids as models for development and diseases[J/OL]. Cell Regen 202110(1)∶33[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/34719743. DOI: 10.1186/s13619-021-00097-1 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Afanasyeva T Corral-Serrano JC Garanto A et al. A look into retinal organoids:methods,analytical techniques,and applications[J]. Cell Mol Life Sci 202178(19-20)∶65056532. DOI: 10.1007/s00018-021-03917-4 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Capowski EE Samimi K Mayerl SJ et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines[J/OL]. Development 2019146(1)∶dev171686[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/30567931. DOI: 10.1242/dev.171686 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Eiraku M Sasai Y Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues[J]. Nat Protoc 20117(1)∶6979. DOI: 10.1038/nprot.2011.429 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Eiraku M Takata N Ishibashi H et al. Self-organizing optic-cup morphogenesis in three-dimensional culture[J]. Nature 2011472(7341)∶5156. DOI: 10.1038/nature09941 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Nakano T Ando S Takata N et al. Self-formation of optic cups and storable stratified neural retina from human ESCs[J]. Cell Stem Cell 201210(6)∶771785. DOI: 10.1016/j.stem.2012.05.009 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Zhong X Gutierrez C Xue T et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs[J/OL]. Nat Commun 201454047[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/24915161. DOI: 10.1038/ncomms5047 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Achberger K Probst C Haderspeck J et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform[J/OL]. Elife 20198e46188[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/31451149. DOI: 10.7554/eLife.46188 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Yeste J García-Ramírez M Illa X et al. A compartmentalized microfluidic chip with crisscross microgrooves and electrophysiological electrodes for modeling the blood-retinal barrier[J]. Lab Chip 201718(1)∶95105. DOI: 10.1039/c7lc00795g .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Zhang Z Xu Z Yuan F et al. Retinal organoid technology:where are we now?[J]. Int J Mol Sci 202122(19)∶10244[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/34638582. DOI: 10.3390/ijms221910244 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Pagon RA . Retinitis pigmentosa[J]. Surv Ophthalmol 198833(3)∶137177. DOI: 10.1016/0039-6257(88)90085-9 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Tsang SH Sharma T Autosomal dominant retinitis pigmentosa[J]. Adv Exp Med Biol 201810856977. DOI: 10.1007/978-3-319-95046-4_15 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Ayuso C Millan JM . Retinitis pigmentosa and allied conditions today:a paradigm of translational research[J/OL]. Genome Med 20102(5)∶34[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/20519033. DOI: 10.1186/gm155 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Ma C Jin K Jin ZB . Generation of human patient iPSC-derived retinal organoids to model retinitis pigmentosa[J/OL]. J Vis Exp 2022184[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/35786611. DOI: 10.3791/64045 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Audo I Bujakowska K Mohand-Saïd S et al. Prevalence and novelty of PRPF31 mutations in French autosomal dominant rod-cone dystrophy patients and a review of published reports[J/OL]. BMC Med Genet 201011145[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/20939871. DOI: 10.1186/1471-2350-11-145 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Martin-Merida I Sanchez-Alcudia R Fernandez-San Jose P et al. Analysis of the PRPF31 gene in Spanish autosomal dominant retinitis pigmentosa patients:a novel genomic rearrangement[J]. Invest Ophthalmol Vis Sci 201758(2)∶10451053. DOI: 10.1167/iovs.16-20515 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Buskin A Zhu L Chichagova V et al. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa[J/OL]. Nat Commun 20189(1)∶4234[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/30315276. DOI: 10.1038/s41467-018-06448-y .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Rodrigues A Slembrouck-Brec A Nanteau C et al. Modeling PRPF31 retinitis pigmentosa using retinal pigment epithelium and organoids combined with gene augmentation rescue[J/OL]. NPJ Regen Med 20227(1)∶39. http://www.ncbi.nlm.nih.gov/pubmed/35974011. DOI: 10.1038/s41536-022-00235-6 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Birtel J Gliem M Mangold E et al. Next-generation sequencing identifies unexpected genotype-phenotype correlations in patients with retinitis pigmentosa[J/OL]. PLoS One 201813(12)∶e0207958[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/30543658. DOI: 10.1371/journal.pone.0207958 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Deng WL Gao ML Lei XL et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients[J]. Stem Cell Reports 201810(4)∶12671281. DOI: 10.1016/j.stemcr.2018.02.003 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Li YP Deng WL Jin ZB . Modeling retinitis pigmentosa through patient-derived retinal organoids[J/OL]. STAR Protoc 20212(2)∶100438[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/33899019. DOI: 10.1016/j.xpro.2021.100438 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Bujakowska K Audo I Mohand-Saïd S et al. CRB1 mutations in inherited retinal dystrophies[J]. Hum Mutat 201233(2)∶306315. DOI: 10.1002/humu.21653 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Quinn PM Buck TM Mulder AA et al. Human iPSC-derived retinas recapitulate the fetal CRB1 CRB2 complex formation and demonstrate that photoreceptors and Müller glia are targets of AAV5[J]. Stem Cell Reports 201912(5)∶906919. DOI: 10.1016/j.stemcr.2019.03.002 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Moon SY Zhang D Chen SC et al. Generation of two induced pluripotent stem cell lines from a retinitis pigmentosa patient with compound heterozygous mutations in CRB1[J/OL]. Stem Cell Res 202154102403[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/34034222. DOI: 10.1016/j.scr.2021.102403 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Boon N Lu X Andriessen CA et al. AAV-mediated gene augmentation therapy of CRB1 patient-derived retinal organoids restores the histological and transcriptional retinal phenotype[J]. Stem Cell Reports 202318(5)∶11231137. DOI: 10.1016/j.stemcr.2023.03.014 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Breuer DK Yashar BM Filippova E et al. A comprehensive mutation analysis of RP2 and RPGR in a North American cohort of families with X-linked retinitis pigmentosa[J]. Am J Hum Genet 200270(6)∶15451554. DOI: 10.1086/340848 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Lane A Jovanovic K Shortall C et al. Modeling and rescue of RP2 retinitis pigmentosa using iPSC-derived retinal organoids[J]. Stem Cell Reports 202015(1)∶6779. DOI: 10.1016/j.stemcr.2020.05.007 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Bandah-Rozenfeld D Collin RW Banin E et al. Mutations in IMPG2,encod ing interphotoreceptor matrix proteoglycan 2,cause autosomal-recessive retinitis pigmentosa [J]. Am J Hum Genet 201087(2)∶199208. DOI: 10.1016/j.ajhg.2010.07.004 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Mayerl SJ Bajgai S Ludwig AL et al. Human retinal organoids harboring IMPG2 mutations exhibit a photoreceptor outer segment phenotype that models advanced retinitis pigmentosa[J]. Stem Cell Reports 202217(11)∶24092420. DOI: 10.1016/j.stemcr.2022.09.004 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Milam AH Rose L Cideciyan AV et al. The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration[J]. Proc Natl Acad Sci U S A 200299(1)∶473478. DOI: 10.1073/pnas.022533099 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Chen J Rattner A Nathans J The rod photoreceptor-specific nuclear receptor Nr2e3 represses transcription of multiple cone-specific genes[J]. J Neurosci 200525(1)∶118129. DOI: 10.1523/JNEUROSCI.3571-04.2005 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Gire AI Sullivan LS Bowne SJ et al. The Gly56Arg mutation in NR2E3 accounts for 1-2% of autosomal dominant retinitis pigmentosa[J]. Mol Vis 20071319701975.
返回引文位置Google Scholar
百度学术
万方数据
[35]
Blanco-Kelly F García Hoyos M Lopez Martinez MA et al. Dominant retinitis pigmentosa,p.Gly56Arg mutation in NR2E3:phenotype in a large cohort of 24 cases[J/OL]. PLoS One 201611(2)∶e0149473[2023-08-06]. http://www.ncbi.nlm.nih.gov/pubmed/26910043. DOI: 10.1371/journal.pone.0149473 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Wiley LA Burnight ER DeLuca AP et al. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness[J/OL]. Sci Rep 2016630742[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/27471043. DOI: 10.1038/srep30742 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Toualbi L Toms M Moosajee M USH2A-retinopathy:from genetics to therapeutics[J/OL]. Exp Eye Res 2020201108330[2023-08-06]. http://www.ncbi.nlm.nih.gov/pubmed/33121974. DOI: 10.1016/j.exer.2020.108330 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Guo Y Wang P Ma JH et al. Modeling retinitis pigmentosa:retinal organoids generated from the iPSCs of a patient with the USH2A mutation show early developmental abnormalities[J/OL]. Front Cell Neurosci 201913361[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/31481876. DOI: 10.3389/fncel.2019.00361 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Su T Liang L Zhang L et al. Retinal organoids and microfluidic chip-based approaches to explore the retinitis pigmentosa with USH2A mutations[J/OL]. Front Bioeng Biotechnol 202210939774[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/36185441. DOI: 10.3389/fbioe.2022.939774 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Danciger M Blaney J Gao YQ et al. Mutations in the PDE6B gene in autosomal recessive retinitis pigmentosa[J]. Genomics 199530(1)∶17. DOI: 10.1006/geno.1995.0001 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Gao ML Lei XL Han F et al. Patient-specific retinal organoids recapitulate disease features of late-onset retinitis pigmentosa[J/OL]. Front Cell Dev Biol 20208128[2023-08-02]. http://www.ncbi.nlm.nih.gov/pubmed/32211407. DOI: 10.3389/fcell.2020.00128 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
DeLuca AP Whitmore SS Barnes J et al. Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis[J]. Hum Mol Genet 201625(1)∶4456. DOI: 10.1093/hmg/ddv446 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Sharma TP Wiley LA Whitmore SS et al. Patient-specific induced pluripotent stem cells to evaluate the pathophysiology of TRNT1-associated retinitis pigmentosa[J]. Stem Cell Res 2017215870. DOI: 10.1016/j.scr.2017.03.005 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Aasen DM Vergara MN . New drug discovery paradigms for retinal diseases:a focus on retinal organoids[J]. J Ocul Pharmacol Ther 202036(1)∶1824. DOI: 10.1089/jop.2018.0140 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Schwarz N Lane A Jovanovic K et al. Arl3 and RP2 regulate the trafficking of ciliary tip kinesins[J]. Hum Mol Genet 201726(13)∶24802492. DOI: 10.1093/hmg/ddx143 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Ito SI Onishi A Takahashi M Chemically-induced photoreceptor degeneration and protection in mouse iPSC-derived three-dimensional retinal organoids[J]. Stem Cell Res 20172494101. DOI: 10.1016/j.scr.2017.08.018 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Hallam D Hilgen G Dorgau B et al. Human-induced pluripotent stem cells generate light responsive retinal organoids with variable and nutrient-dependent efficiency[J]. Stem Cells 201836(10)∶15351551. DOI: 10.1002/stem.2883 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Dorgau B Georgiou M Chaudhary A et al. Human retinal organoids provide a suitable tool for toxicological investigations:a comprehensive validation using drugs and compounds affecting the retina[J]. Stem Cells Transl Med 202211(2)∶159177. DOI: 10.1093/stcltm/szab010 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Arthur P Muok L Nathani A et al. Bioengineering human pluripotent stem cell-derived retinal organoids and optic vesicle-containing brain organoids for ocular diseases[J/OL]. Cells 202211(21)∶3429[2023-08-06]. http://www.ncbi.nlm.nih.gov/pubmed/36359825. DOI: 10.3390/cells11213429 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
West EL Majumder P Naeem A et al. Antioxidant and lipid supplementation improve the development of photoreceptor outer segments in pluripotent stem cell-derived retinal organoids[J]. Stem Cell Reports 202217(4)∶775788. DOI: 10.1016/j.stemcr.2022.02.019 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Diakatou M Dubois G Erkilic N et al. Allele-specific knockout by CRISPR/Cas to treat autosomal dominant retinitis pigmentosa caused by the G56R mutation in NR2E3[J/OL]. Int J Mol Sci 202122(5)∶2607[2023-08-06]. http://www.ncbi.nlm.nih.gov/pubmed/33807610. DOI: 10.3390/ijms22052607 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
da Costa BL Li Y Levi SR et al. Generation of CRB1 RP patient-derived iPSCs and a CRISPR/Cas9-mediated homology-directed repair strategy for the crb1 c.2480g > t mutation [J]. Adv Exp Med Biol 20231415571576. DOI: 10.1007/978-3-031-27681-1_83 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Llonch S Carido M Ader M Organoid technology for retinal repair[J]. Dev Biol 2018433(2)∶132143. DOI: 10.1016/j.ydbio.2017.09.028 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Gonzalez-Cordero A Kruczek K Naeem A et al. Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors[J]. Stem Cell Reports 20179(3)∶820837. DOI: 10.1016/j.stemcr.2017.07.022 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Tu HY Watanabe T Shirai H et al. Medium- to long-term survival and functional examination of human iPSC-derived retinas in rat and primate models of retinal degeneration[J]. EBioMedicine 201939562574. DOI: 10.1016/j.ebiom.2018.11.028 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
Akiba R Takahashi M Baba T et al. Progress of iPS cell-based transplantation therapy for retinal diseases[J]. Jpn J Ophthalmol 202367(2)∶119128. DOI: 10.1007/s10384-022-00974-5 .
返回引文位置Google Scholar
百度学术
万方数据
[57]
Cowan CS Renner M De Gennaro M et al. Cell types of the human retina and its organoids at single-cell resolution[J]. Cell 2020182(6)∶16231640. DOI: 10.1016/j.cell.2020.08.013 .
返回引文位置Google Scholar
百度学术
万方数据
[58]
Wörsdörfer P Dalda N Kern A et al. Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells[J]. Sci Rep 20199(1)∶15663[2023-08-06]. http://www.ncbi.nlm.nih.gov/pubmed/31666641. DOI: 10.1038/s41598-019-52204-7 .
返回引文位置Google Scholar
百度学术
万方数据
[59]
Perepelkina T Kegeles E Baranov P Optimizing the conditions and use of synthetic matrix for three-dimensional in vitro retinal differentiation from mouse pluripotent cells [J]. Tissue Eng Part C Methods 201925(7)∶433445. DOI: 10.1089/ten.TEC.2019.0053 .
返回引文位置Google Scholar
百度学术
万方数据
[60]
Jin ZB Okamoto S Xiang P et al. Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling[J]. Stem Cells Transl Med 20121(6)∶503509. 10.5966/sctm.2012-0005 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
郭永龙,Email: nc.defudabe.uacsgnulgniw
B
所有作者均声明不存在利益冲突
C
国家自然科学基金 (32370878、32061160469)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号