论著
ENGLISH ABSTRACT
2023年河南省外环境H7N9禽流感病毒的基因组序列分析
毋碧聪
罗雪
卢世栋
宋云
张白帆
卫海燕
聂轶飞
夏晖
万思嘉
叶莹
黄学勇
郭万申
马红霞
作者及单位信息
·
DOI: 10.3760/cma.j.cn112309-20230912-00074
Genome sequences of H7N9 avian influenza virus in poultry-related environment in Henan Province in 2023
Wu Bicong
Luo Xue
Lu Shidong
Song Yun
Zhang Baifan
Wei Haiyan
Nie Yifei
Xia Hui
Wan Sijia
Ye Ying
Huang Xueyong
Guo Wanshen
Ma Hongxia
Authors Info & Affiliations
Wu Bicong
Henan Provincial Key Laboratory of Infectious Disease Microbiology, Infectious Disease Control and Prevention Institute, Henan Provincial Center for Disease Control and Prevention, Zhengzhou 450016, China
Luo Xue
Henan Provincial Key Laboratory of Infectious Disease Microbiology, Infectious Disease Control and Prevention Institute, Henan Provincial Center for Disease Control and Prevention, Zhengzhou 450016, China
Lu Shidong
Henan Provincial Key Laboratory of Infectious Disease Microbiology, Infectious Disease Control and Prevention Institute, Henan Provincial Center for Disease Control and Prevention, Zhengzhou 450016, China
Song Yun
Henan Provincial Key Laboratory of Infectious Disease Microbiology, Infectious Disease Control and Prevention Institute, Henan Provincial Center for Disease Control and Prevention, Zhengzhou 450016, China
Zhang Baifan
Henan Provincial Key Laboratory of Infectious Disease Microbiology, Infectious Disease Control and Prevention Institute, Henan Provincial Center for Disease Control and Prevention, Zhengzhou 450016, China
Wei Haiyan
Henan Provincial Key Laboratory of Infectious Disease Microbiology, Infectious Disease Control and Prevention Institute, Henan Provincial Center for Disease Control and Prevention, Zhengzhou 450016, China
Nie Yifei
Henan Provincial Key Laboratory of Infectious Disease Microbiology, Infectious Disease Control and Prevention Institute, Henan Provincial Center for Disease Control and Prevention, Zhengzhou 450016, China
Xia Hui
Inspection and Testing Center, Xuchang City Center for Disease Control and Prevention, Xuchang 461000, China
Wan Sijia
Inspection and Testing Center, Xuchang City Center for Disease Control and Prevention, Xuchang 461000, China
Ye Ying
Henan Provincial Key Laboratory of Infectious Disease Microbiology, Infectious Disease Control and Prevention Institute, Henan Provincial Center for Disease Control and Prevention, Zhengzhou 450016, China
Huang Xueyong
Henan Provincial Key Laboratory of Infectious Disease Microbiology, Infectious Disease Control and Prevention Institute, Henan Provincial Center for Disease Control and Prevention, Zhengzhou 450016, China
Guo Wanshen
Henan Provincial Key Laboratory of Infectious Disease Microbiology, Infectious Disease Control and Prevention Institute, Henan Provincial Center for Disease Control and Prevention, Zhengzhou 450016, China
Ma Hongxia
Henan Provincial Key Laboratory of Infectious Disease Microbiology, Infectious Disease Control and Prevention Institute, Henan Provincial Center for Disease Control and Prevention, Zhengzhou 450016, China
·
DOI: 10.3760/cma.j.cn112309-20230912-00074
369
70
0
0
1
0
PDF下载
APP内阅读
摘要

目的分析活禽市场相关环境中检出的H7N9禽流感病毒(avian influenza virus,AIV)的遗传进化和分子特征。

方法采集禽类粪便、污水,以及脱毛机和案板擦拭拭子等标本,实时荧光定量PCR鉴定甲型流感病毒和H7N9亚型。对于H7N9阳性标本以甲型流感病毒通用引物扩增病毒全基因组并测序,利用BLAST和MEGA X软件进行序列比对、系统进化和分子特征分析。

结果2023年2月采集于许昌市活禽市场的7份外环境标本中检出4份H7N9 AIV阳性,3份H7N9 AIV阳性标本测序成功,其各基因核苷酸一致性较高(98.37%~100.00%)。BLAST分析显示主要与我国2020—2021年国内禽中分离的H7N9毒株一致性最高。遗传进化分析显示3株病毒株聚在同一分支,与最近环境分离株相聚较近,而与最近人/禽感染病毒株关系较远。通过与各时期的代表性病毒株序列比对发现,本研究检出的病毒株呈禽高致病性,裂解位点处插入了4个氨基酸KRAA,病毒株血凝素受体结合位点为QSG,属于禽结合受体,血凝素出现G186I位点突变。聚合酶碱性蛋白2未出现哺乳动物适应性E627K突变。未检测到与神经氨酸酶抑制剂(奥司他韦)和聚合酶酸性蛋白抑制剂(巴洛沙韦)耐药相关的R292K和I38T位点突变,提示病毒对上述药物敏感性未降低。M2蛋白出现S31N突变,提示对烷胺类药物耐药。

结论从活禽市场检出的3株H7N9病毒株呈禽高致病性,与既往感染人/禽代表株相比,未明显增加人受体结合力、哺乳动物致病性、病毒传播力和耐药相关分子位点。

禽流感病毒;H7N9;活禽市场;遗传进化;突变
ABSTRACT

ObjectiveTo analyze the genetic evolution and molecular characteristics of H7N9 avian influenza virus (AIV) isolated in a live poultry market.

MethodsSamples such as poultry feces, sewage, and hair removal machine and chopping board swabs were collected. Real-time fluorescent quantitative PCR was used to detect influenza A virus and H7N9 AIV in the samples. The whole genome of H7N9 AIV was amplified with influenza A virus universal primers and sequenced. BLAST and MEGA X were used for sequence alignment, phylogenetic analysis and molecular characterization.

ResultsSeven poultry-related environment samples were collected in the live poultry market in Xuchang city in February 2023, and four were positive for H7N9 AIV. The whole genome sequences of three H7N9 AIV isolates were successfully obtained, and the isolates shared high nucleotide identity in different genes (98.37%-100.00%). BLAST analysis showed they were highly identical to H7N9 strains isolated from domestic poultry in China from 2020 to 2021. Genetic evolution analysis showed that the three isolates clustered in the same branch and were closer to the recent environmental isolates than to the recent strains isolated from human or avian. Through comparison with the sequences of the representative strains in different periods, it was found that the isolated strains in this study showed high avian pathogenicity with four amino acids KRAA inserted at the cleavage site; the hemagglutinin receptor-binding site was QSG, which was an avian binding receptor; there was a G186I mutation in hemagglutinin. Mammalian-adaptive mutation E627K was not detected in polymerase basic protein 2. Mutations (R292K and I38T) associated with drug resistance to neuraminidase inhibitor (oseltamivir) and polymerase acidic protein inhibitor (baloshavir) were not detected, suggesting that these isolates remained susceptible to these drugs. A S31N mutation was found in M2 protein, indicating they were resistant to alkamines.

ConclusionsThe three H7N9 AIV strains isolated in the live poultry market have high avian pathogenicity, but there are no significant increase in mutations related to the binding ability to human receptors, mammalian pathogenicity, viral transmissibility, or drug resistance as compared with previous representative strains causing human or avian infection.

Avian influenza virus;H7N9;Live poultry market;Genetic evolution;Mutation
Ma Hongxia, Email: mocdef.3ab61xhamcdcnh, Tel: 0086-371-68089080
引用本文

毋碧聪,罗雪,卢世栋,等. 2023年河南省外环境H7N9禽流感病毒的基因组序列分析[J]. 中华微生物学和免疫学杂志,2024,44(05):377-381.

DOI:10.3760/cma.j.cn112309-20230912-00074

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
H7N9禽流感病毒(avian influenza virus,AIV)是一种新型重组AIV,2013年3月首先在上海、安徽等地发现,为低致病性禽流感病毒(low-pathogenic avian influenza virus,LPAIV) [ 1 ]。2013—2017年间我国共出现5次人感染H7N9疫情,第5次疫情中首先在广东地区出现高致病性禽流感病毒(highly pathogenic avian influenza virus,HPAIV) [ 2 ]。2017年9月实施禽类接种H5/H7二价疫苗措施后,有效预防了人感染H7N9。2018年2月至今,仅2019年甘肃报道1例人感染HPAIV病例和辽宁报道鸡感染HPAIV事件 [ 3 , 4 ]。2023年2月,在许昌市活禽市场环境监测中检出H7N9 AIV,这是河南省自2017年7月后首次在禽相关环境中检出H7N9亚型。本研究通过与各时期代表株和疫苗株对比,从分子水平探讨河南省外环境中AIV的遗传进化关系和关键致病特征,评估其感染人的可能性,为AIV防控提供科学依据。
材料和方法
1.标本采集:
2023年2月,在许昌市某活禽市场白条鸡店采集2份鸡粪便、2份清洗禽类污水、1份脱毛机擦拭拭子和2份案板擦拭拭子标本,标本保存于含氨苄青霉素、链霉素、两性菌素B、庆大霉素、盐酸氧氟沙星、磺胺甲基异噁唑等抗生素的病毒采样管中,-80℃保存备用。
2.病毒核酸提取:
按照核酸提取试剂盒说明书和仪器操作规程(西安天隆科技公司)提取病毒RNA。
3.实时荧光定量PCR:
甲型流感病毒核酸检测试剂盒(real-time PCR,硕世)检测甲型流感病毒,H5/H7/H9禽流感病毒核酸检测试剂盒(real-time PCR,硕世)检测H5、H7和H9亚型,流感病毒N亚型核酸检测试剂盒(Real-time PCR法,硕世)检测N1~N9亚型。质控标准:空白对照和阴性对照无扩增曲线,且阳性对照在检测通道均有S型扩增曲线,实验成立,否则视实验结果无效。待检标本无Ct值或Ct值为0,结果报告为阴性;待检标本Ct≤35,并生成标准扩增曲线,结果报告为阳性。Ct值有明显的S型扩增曲线,且35<Ct值≤40,实验需要重复。
4.病毒全基因组测序及序列分析:
ULSEN超灵敏度甲型流感病毒全基因组捕获试剂盒(型号V-090417,北京微未来公司)对提取的病毒总RNA进行全基因组特异性扩增。QIAquick PCR纯化试剂盒(德国QIAGEN公司)纯化PCR产物。根据Nextera XT DNA Library Preparation试剂盒(美国Illumina公司)说明书操作步骤构建DNA测序文库,使用Illumina测序平台的Miseq测序仪进行双端测序。使用微未来流感病毒全基因组分析软件对测序原始下机数据进行序列拼接。
5.基因遗传进化和突变分析:
通过全球共享禽流感数据倡议组织(GISAID) BLAST比对分析病毒株各基因片段相似性较高毒株的序列。从GISAID数据库中选取2013—2023年国内具有代表性H7N9病毒株作为参考序列,使用MEGA X软件比对分析突变位点,并基于最大似然法构建系统进化树,Bootstrap值设置为1 000,以评估可靠性。
结果
1.病原学鉴定:
对7份禽环境相关标本进行实时荧光定量PCR检测,结果显示4份(清洗禽类污水2份和案板擦拭拭子标本2份)甲型流感病毒、H7亚型和N9亚型阳性。
2.病毒株全基因组测序:
对阳性标本测序,获得3个标本(清洗禽类污水-1、清洗禽类污水-2和案板擦拭拭子-1)的病毒株序列,3株病毒株聚合酶碱性蛋白2(polymerase basic protein 2,PB2)、聚合酶碱性蛋白1(polymerase basic protein 1,PB1)、聚合酶酸性蛋白(polymerase acidic protein, PA)、血凝素(hemagglutinin, HA)、核蛋白(nucleoprotein, NP)、神经氨酸酶(neuraminidase, NA)、基质蛋白(matrix protein, MP)和非结构蛋白(non-structural protein, NS)基因的同源性分别为99.96%~100.00%、98.37%~100.00%、100.00%、100.00%、100.00%、99.93%~100.00%、99.39%~100.00%和100.00%,已将3株病毒株的全基因组序列提交至GISAID数据库,序列号分别为A/Environment/Henan/01/2023:EPI_ISL_17837462、A/Environment/Henan/02/2023:EPI_ISL_17958292和A/Environment/Henan/03/2023:EPI_ISL_17958293。
3.病毒株序列比对和遗传进化分析:
将3株病毒株的各基因片段经GISAID BLAST比对分析,结果如 表1 所示。A/Environment/Henan/01/2023和A/Environment/Henan/02/2023的BLAST结果完全一致,PB2、PB1、PA、HA、NP、NA和MP基因主要与2020—2021年河北禽类中分离的病毒株一致性较高,NS基因与2021年山西禽类分离的病毒株一致性较高。A/Environment/Henan/03/2023的PB1基因则与2017年广西人感染病毒株一致性较高,其他各基因比对结果与A/Environment/Henan/01/2023和A/Environment/Henan/02/2023一致。从GISAID数据库中随机选择2013—2023年代表株序列构建HA基因系统进化树( 图1 )。44株病毒株序列形成2个进化分支,其中第1分支为2013—2017年病毒株序列,第2分支为2019—2023年病毒株序列。同时以第5次流行期间出现的HPAIV序列A/Chicken/Guangdong/SD008/2017为分界点,进化树上半部分为LPAIV序列,下半部分为HPAIV序列。本研究中的3株病毒株HA基因归属于HPAIV分类并聚在同一分支,同源性为100.00%,与A/Chicken/China/SD215/2021和最近环境分离株A/Chicken/Hebei/1010/2021亲缘关系较近,而与5次流行期毒株、最近人/禽感染病毒株均相聚较远。
H7N9禽流感病毒血凝素基因进化树

注:◆为2013年人感染病毒株;●为第5次流行期高致病性禽流感病毒代表株;★为疫苗株;■为最近人感染病毒株;☆为最近禽感染病毒株;◇为最近环境分离株;▲为本研究病毒株;绿色字体为第1次(2013年2—9月)流行期病毒株;蓝色字体为第2次(2013年10月—2014年9月)流行期病毒株;紫色字体为第3次(2014年10月—2015年9月)流行期病毒株;黄色字体为第4次(2015年10月—2016年9月)流行期病毒株;红色字体为第5次(2016年10月—2017年2月)流行期病毒株;黑色字体为非流行期(2017年3月至今)病毒株

Phylogenetic tree of hemagglutinin genes of H7N9 avian influenza viruses
基因 A/Environment/Henan/01/2023 A/Environment/Henan/02/2023 A/Environment/Henan/03/2023
核苷酸同源性最高的毒株 一致性 核苷酸同源性最高的毒株 一致性 核苷酸同源性最高的毒株 一致性
PB2 A/Chicken/Hebei/1010/2021 98% A/Chicken/Hebei/1010/2021 98% A/Chicken/Hebei/1010/2021 98%
PB1 A/Chicken/Hebei/1009/2020 98% A/Chicken/Hebei/1009/2020 98% A/Guangxi/3/2017 97%
PA A/Chicken/Hebei/1009/2020 98% A/Chicken/Hebei/1009/2020 98% A/Chicken/Hebei/1009/2020 98%
HA A/Chicken/Hebei/1009/2020 98% A/Chicken/Hebei/1009/2020 98% A/Chicken/Hebei/1009/2020 98%
NP A/Chicken/Hebei/1009/2020 98% A/Chicken/Hebei/1009/2020 98% A/Chicken/Hebei/1009/2020 98%
NA A/Chicken/Hebei/1009/2020 98% A/Chicken/Hebei/1009/2020 98% A/Chicken/Hebei/1009/2020 98%
MP A/Chicken/Hebei/1010/2021 99% A/Chicken/Hebei/1010/2021 99% A/Chicken/Hebei/1010/2021 98%
NS A/Chicken/Shanxi/1012/2021 97% A/Chicken/Shanxi/1012/2021 97% A/Chicken/Shanxi/1012/2021 97%
H7N9病毒株各基因核苷酸一致性分析
Analysis of nucleotide identity of different genes between H7N9 strains
4.病毒株HA蛋白分子特征分析:
与各类参考株相比,本研究中3株病毒株HA蛋白的裂解位点处序列为PEIPKRKRAARG,与2017—2021年间的参考序列一样均插入了4个氨基酸,均呈禽高致病性,但插入氨基酸为KRAA,而参考序列均为KRTA( 图2 )。另外,3株病毒株仅HA蛋白出现G186I突变,其他位点与最近环境分离株一致( 表2 )。
不同流行期H7N9病毒株HA蛋白裂解位点
Hemagglutinin cleavage sites of H7N9 strains in different epidemic periods
毒株 HA PB2 PB1 NA PA M2 NP
NPT160A G186V Q226L G228S I292V K526R E627K D701N I368V R292K I38T V100A K356R S31N A286V T437M
A/Shanghai/2/2013 A V L G I K K D V R I A R N A T
A/Chicken/Guangdong/SD008/2017 A V L G I R E D V R I A R N A T
A/Chicken/Guangxi/SD098/2017 A V Q G I R E D V R I A R N V M
A/Gansu/23275/2019 T V Q G I R K D V R I T R N A T
A/Chicken/Liaoning/SD026/2019 T V Q G I R E D V R V A R N A T
A/Chicken/Hebei/1010/2021 T V Q G I R E D I R I A R N A T
A/Environment/Henan/01/2023 T I Q G I R E D I R I A R N A T
A/Environment/Henan/02/2023 T I Q G I R E D I R I A R N A T
A/Environment/Henan/03/2023 T I Q G I R E D I R I A R N A T
H7N9病毒株关键分子突变位点
Key molecular mutation sites in H7N9 strains

注:HA:血凝素;PB2:聚合酶碱性蛋白2;PB1:聚合酶碱性蛋白1;NA:神经氨酸酶;PA:聚合酶酸性蛋白;M2:基质蛋白2;NP:核蛋白

讨论
研究表明,城乡活禽市场和活禽批发市场作为禽类贸易最频繁的场所,是人感染AIV的重要来源 [ 5 ]。溯源显示,本研究中检出的3株H7N9病毒株均来自同一家农贸市场白条鸡店,宰杀售卖的活鸡来自省内规模较大的养殖场,且均实施了禽类疫苗接种。序列分析显示3株病毒株的同源性较高。系统发育进化树分析显示本研究中的病毒株属于HPAIV,但与最近的人感染和禽感染病毒株不属于同一分支,与2021年河北地区环境分离株亲缘关系较近。
禽相关环境同时也是AIV发生重配产生新亚型的重要场所 [ 6 ],相关文献报道第5次疫情中出现的HPAIV是由LPAIV的HA蛋白裂解位点处插入了KRTA这4个氨基酸所致,导致禽致病性显著增加 [ 7 ]。本研究中病毒株HA的裂解位点为KRKRAARG,与2017—2021年参考序列相比,插入的第3个氨基酸由苏氨酸变成了丙氨酸,与2019年文献报道的1株病例标本分离毒株中HA蛋白裂解区一致 [ 8 ]。HA蛋白第226和228位均未改变,表明病毒株HA蛋白仍为禽结合受体,但HA蛋白出现G186I突变,与参考序列出现的G186V不一致,需要进一步验证该位点对受体结合的作用 [ 9 ]。相关文献表明NP蛋白中的A286V和T437M双重突变可减弱对小鼠的致病性 [ 10 ],本研究中病毒株未出现该位点突变。也有文献表明人感染病例分离株PB2蛋白中会出现I292V、K526R和E627K突变,且细胞及动物实验表明K526R和E627K共突变可增强病毒聚合酶活性进而增强病毒在豚鼠、雪貂等哺乳动物的复制能力 [ 11 , 12 , 13 ],本研究中病毒株和环境分离参考株一样,仅出现K526R突变,而关键位点第627位未发生突变,表明病毒在哺乳动物等体内复制能力未增强。PA蛋白的V100A和K356R位点在禽-人传播方面具有重要作用 [ 3 , 14 ],本研究中病毒株和所有参考序列一致均出现上述位点突变。耐药分析显示本研究中病毒株和既往毒株一样仅对烷胺类药物耐药。
2017年9月我国实施的禽间免疫措施有效预防了人感染H7N9 [ 15 ],自2019年4月以来无人感染H7N9病例出现。河南省近几年在连续开展的禽流感外环境监测中检出的AIV分布主要为H9亚型 [ 16 ],这与同期全国地区禽流感亚型分布相一致,表明我国H7亚型AIV整体处于低水平甚至无流行态势 [ 5 ]。但2023年在常规监测中又检出H7N9病毒,提示实施禽间免疫尚不能完全消除H7N9。2017年文献表明禽间疫苗实施后造成H7N9病毒宿主由家禽鸡扩展到鸭宿主 [ 7 ],加之无法对野禽实施禽间免疫,因此我们仍需加强外环境中H7N9病毒的监测,预防H7N9高致病性禽流感以及新型流感疫情出现。
参考文献
[1]
Gao RB , Cao B , Hu YW ,et al. Human infection with a novel avian-origin influenza A (H7N9) virus[J]. N Engl J Med, 2013,368(20):1888-1897. DOI: 10.1056/NEJMoa1304459 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Wang XL , Jiang H , Wu P ,et al. Epidemiology of avian influenza A H7N9 virus in human beings across five epidemics in mainland China, 2013-17: an epidemiological study of laboratory-confirmed case series[J]. Lancet Infect Dis, 2017,17(8):822-832. DOI: 10.1016/S1473-3099(17)30323-7 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Yu DS , Xiang GF , Zhu WF ,et al. The re-emergence of highly pathogenic avian influenza H7N9 viruses in humans in mainland China, 2019[J]. Euro Surveill, 2019,24(21):1900273. DOI: 10.2807/1560-7917.ES.2019.24.21.1900273 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Centers for Disease Control and Prevention. Information on Bird Flu[EB/OL]. ( 2023-10-16) [2023-09-12]. https://www.cdc.gov/flu/avianflu/index.htm.
返回引文位置Google Scholar
百度学术
万方数据
[5]
Bo H , Zhang Y , Dong LB ,et al. Distribution of avian influenza viruses according to environmental surveillance during 2014-2018, China[J]. Infect Dis Poverty, 2021,10(1):60. DOI: 10.1186/s40249-021-00850-3 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Yin X , Deng GH , Zeng XY ,et al. Genetic and biological properties of H7N9 avian influenza viruses detected after application of the H7N9 poultry vaccine in China[J]. PLoS Pathog, 2021,17(4):e1009561. DOI: 10.1371/journal.ppat.1009561 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Shi JZ , Deng GH , Ma SJ ,et al. Rapid evolution of H7N9 highly pathogenic viruses that emerged in China in 2017[J]. Cell Host Microbe, 2018,24(4):558-568.e7. DOI: 10.1016/j.chom.2018.08.006 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Qi WB , Jia WX , Liu D ,et al. Emergence and adaptation of a novel highly pathogenic H7N9 influenza virus in birds and humans from a 2013 human-infecting low-pathogenic ancestor[J]. J Virol, 2018,92(2):e00921-17. DOI: 10.1128/JVI.00921-17 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Xiong XL , Martin SR , Haire LF ,et al. Receptor binding by an H7N9 influenza virus from humans[J]. Nature, 2013,499(7459):496-499. DOI: 10.1038/nature12372 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Ma SJ , Zhang B , Shi JZ ,et al. Amino acid mutations A286V and T437M in the nucleoprotein attenuate H7N9 viruses in mice[J]. J Virol, 2020,94(2):e01530-19. DOI: 10.1128/JVI.01530-19 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Yamayoshi S , Fukuyama S , Yamada S ,et al. Amino acids substitutions in the PB2 protein of H7N9 influenza A viruses are important for virulence in mammalian hosts[J]. Sci Rep, 2015,5:8039. DOI: 10.1038/srep08039 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Song WJ , Wang P , Mok BW ,et al. The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication[J]. Nat Commun, 2014,5:5509. DOI: 10.1038/ncomms6509 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Liang LB , Jiang L , Li JP ,et al. Low polymerase activity attributed to PA drives the acquisition of the PB2 E627K mutation of H7N9 avian influenza virus in mammals[J]. mBio, 2019,10(3):e01162-19. DOI: 10.1128/mBio.01162-19 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Xu W , Sun ZW , Liu Q ,et al. PA-356R is a unique signature of the avian influenza A (H7N9) viruses with bird-to-human transmissibility: potential implication for animal surveillances[J]. J Infect, 2013,67(5):490-494. DOI: 10.1016/j.jinf.2013.08.001 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
朱闻斐杨磊王大燕. 高致病性H7N9亚型禽流感病毒病原学研究进展[J]. 国际病毒学杂志 2019,26(6):430-432. DOI: 10.3760/cma.j.issn.1673-4092 .
返回引文位置Google Scholar
百度学术
万方数据
Zhu WF , Yang L , Wang DY . Progress on etiological study of high pathogenic avian influenza A (H7N9) virus[J]. Int J Virol, 2019,26(6):430-432. DOI: 10.3760/cma.j.issn.1673-4092 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[16]
Ma HX , Wang RL , Nie YF ,et al. Distribution of avian influenza A viruses in poultry-related environment and its association with human infection in Henan, 2016 to 2017[J]. Biomed Environ Sci, 2019,32(11):797-803. DOI: 10.3967/bes2019.101 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
马红霞,Email: mocdef.3ab61xhamcdcnh,电话:0371-68089080
B

毋碧聪:实验设计和操作、数据分析、论文撰写;罗雪、卢世栋、宋云、张白帆、卫海燕、夏晖、万思嘉:实验操作;聂轶飞:数据采集、流行病学分析;叶莹、黄学勇、郭万申、马红霞:实验设计、研究指导、经费支持

C
毋碧聪,罗雪,卢世栋,等. 2023年河南省外环境H7N9禽流感病毒的基因组序列分析[J].中华微生物学和免疫学杂志,2024, 44(5): 377-381. DOI: 10.3760/cma.j.cn112309-20230912-00074.
D
所有作者声明无利益冲突
E
河南省医学科技攻关计划项目 (LHGJ20230622,LHGJ20230628)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号