综述
ENGLISH ABSTRACT
啮齿动物青光眼模型研究进展
谢志
曹婷 [综述]
张旭 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20211026-00585
Advances in research on rodent models of glaucoma
Xie Zhi
Cao Ting
Zhang Xu
Authors Info & Affiliations
Xie Zhi
Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Sciences, Key Laboratory of Ophthalmology of Jiangxi Province, Nanchang 330006, China
Cao Ting
Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Sciences, Key Laboratory of Ophthalmology of Jiangxi Province, Nanchang 330006, China
Zhang Xu
Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Sciences, Key Laboratory of Ophthalmology of Jiangxi Province, Nanchang 330006, China
·
DOI: 10.3760/cma.j.cn115989-20211026-00585
576
91
0
0
1
0
PDF下载
APP内阅读
摘要

青光眼是一组以视网膜神经节细胞及其轴突进行性丢失为特征的视神经病变,已成为全球不可逆性致盲的常见原因,但其病理生理机制仍不清楚。因此,合理的青光眼动物模型对揭示青光眼发病机制和改善治疗方案十分重要。近年来,啮齿动物由于具有众多优点而逐渐成为青光眼模型制作的主流选择,除转基因小鼠可自发诱导青光眼外,青光眼实验模型主要分为眼压依赖性和非眼压依赖性。眼压依赖性青光眼模型通过各种手段阻碍房水流出,从而诱导眼压升高;非眼压依赖性青光眼模型试图评估正常眼压性青光眼的相关发病机制。本文就啮齿动物各种青光眼模型的不同损伤机制、操作方法、优点和局限性进行综述。

青光眼;动物模型;啮齿动物;眼压;转基因小鼠
ABSTRACT

Glaucoma is a group of optic neuropathies characterized by the progressive loss of retinal ganglion cells and their axons, and has become a leading cause of irreversible blindness worldwide.However, the pathophysiological mechanisms of glaucoma remain poorly understood.Consequently, suitable animal models of glaucoma are crucial for elucidating the disease's pathogenesis and improving therapeutic strategies.In recent years, rodents have increasingly become the preferred choice for glaucoma modeling due to their numerous advantages.With the exception of transgenic mice, which can spontaneously induce glaucoma, experimental glaucoma models are mainly divided into intraocular pressure-dependent and non-intraocular pressure-dependent models.The intraocular pressure-dependent glaucoma model induces intraocular pressure elevation by obstructing aqueous humor outflow in various ways.The non-intraocular pressure-dependent glaucoma model attempts to study the pathogenesis associated with normal intraocular pressure glaucoma.This article comprehensively reviews the damage mechanisms, operation methods, advantages, and limitations of various rodent models of glaucoma.

Glaucoma;Disease models, animal;Rodentia;Intraocular pressure;Transgenic mice
Zhang Xu, Email: mocdef.3ab6191gnahzux
引用本文

谢志,曹婷,张旭. 啮齿动物青光眼模型研究进展[J]. 中华实验眼科杂志,2024,42(06):557-563.

DOI:10.3760/cma.j.cn115989-20211026-00585

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
青光眼是一组以视网膜神经节细胞(retinal ganglion cells,RGCs)及其轴突进行性丢失为特征的视神经病变,可导致特征性的视盘改变和视野缺损。青光眼是世界范围内导致不可逆盲的首要原因,全球40~80岁人群青光眼患病率约为3.5%,预计到2040年将有1.188亿青光眼患者 [ 1 ]。青光眼主要的危险因素包括眼压、年龄、种族、家族史、皮质类固醇药物的敏感性等 [ 2 ],其发病机制仍不完全明确,目前控制眼压是延缓青光眼进展的主要手段 [ 3 ]。因此,开发和完善动物模型对了解青光眼的病理生理及分子机制,进而改良治疗方法具有重要意义。目前,啮齿动物模型是研究青光眼的主流模型,除去易饲养、易繁殖、价格低廉等优点外,其眼球结构和人类也有许多相似之处。其中,啮齿动物约80%的房水通过小梁网途径流出 [ 4 ];此外,RGCs分为许多亚群 [ 5 ],在内丛状层中RGCs的树突分布同样具有分层现象 [ 6 ];视神经乳头(optic nerve head,ONH)处也会因眼压上升而导致轴突运输阻滞 [ 7 ]。尽管啮齿动物的ONH没有筛板样结构,但其无髓鞘轴突外有星形胶质细胞网络围绕,亚显微结构上与灵长类动物相似 [ 8 ],因此可用于研究以下几种主要的青光眼病理生理变化:(1)小梁网受损,房水流出减少,眼压升高;(2)ONH损伤;(3)RGCs的渐近性死亡;(4)大脑视觉中枢神经元的丧失。某些啮齿动物品系自然表现出高眼压或人为进行基因突变使其发生青光眼,但病变发生时间和程度不可控。诱导性模型作为传统造模方式,优势在于同一模型可提供一侧眼作为对照进行实验。实验诱导的啮齿动物青光眼模型一般分为眼压依赖性模型和非眼压依赖性模型,前者通常为使用各种手段阻碍房水流出,从而诱导眼压升高;后者试图模拟正常眼压性青光眼,以研究青光眼中非眼压相关因素对RGCs及ONH的损伤。本文就近年来常用的啮齿动物青光眼模型进行介绍。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Tham YC Li X Wong TY et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040:a systematic review and meta-analysis[J]. Ophthalmology 2014121(11)∶20812090. DOI: 10.1016/j.ophtha.2014.05.013 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Stein JD Khawaja AP Weizer JS . Glaucoma in adults-screening,diagnosis,and management:a review[J]. JAMA 2021325(2)∶164174. DOI: 10.1001/jama.2020.21899 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Kang JM Tanna AP . Glaucoma[J]. Med Clin North Am 2021105(3)∶493510. DOI: 10.1016/j.mcna.2021.01.004 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Millar JC Pang IH . Non-continuous measurement of intraocular pressure in laboratory animals[J]. Exp Eye Res 20151417490. DOI: 10.1016/j.exer.2015.04.018 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Rheaume BA Jereen A Bolisetty M et al. Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes[J/OL]. Nat Commun 20189(1)∶2759[2023-10-10]. https://pubmed.ncbi.nlm.nih.gov/30018341/. DOI: 10.1038/s41467-018-05134-3 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
El-Danaf RN Huberman AD . Characteristic patterns of dendritic remodeling in early-stage glaucoma:evidence from genetically identified retinal ganglion cell types[J]. J Neurosci 201535(6)∶23292343. DOI: 10.1523/JNEUROSCI.1419-14.2015 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Vidal-Sanz M Salinas-Navarro M Nadal-Nicolás FM et al. Understanding glaucomatous damage:anatomical and functional data from ocular hypertensive rodent retinas[J]. Prog Retin Eye Res 201231(1)∶127. DOI: 10.1016/j.preteyeres.2011.08.001 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Quillen S Schaub J Quigley H et al. Astrocyte responses to experimental glaucoma in mouse optic nerve head[J/OL]. PLoS One 202015(8)∶e0238104[2023-10-10]. https://pubmed.ncbi.nlm.nih.gov/32822415/. DOI: 10.1371/journal.pone.0238104 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
John SW Smith RS Savinova OV et al. Essential iris atrophy,pigment dispersion,and glaucoma in DBA/2J mice[J]. Invest Ophthalmol Vis Sci 199839(6)∶951962.
返回引文位置Google Scholar
百度学术
万方数据
[10]
Wang J Dong Y Characterization of intraocular pressure pattern and changes of retinal ganglion cells in DBA2J glaucoma mice[J]. Int J Ophthalmol 20169(2)∶211217. DOI: 10.18240/ijo.2016.02.05 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Stanescu-Segall D Birke K Wenzel A et al. PAX6 expression and retinal cell death in a transgenic mouse model for acute angle-closure glaucoma[J]. J Glaucoma 201524(6)∶426432. DOI: 10.1097/IJG.0b013e318207069b .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Dai Y Lindsey JD Duong-Polk X et al. Outflow facility in mice with a targeted type Ⅰ collagen mutation[J]. Invest Ophthalmol Vis Sci 200950(12)∶57495753. DOI: 10.1167/iovs.08-3367 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Thomson BR Heinen S Jeansson M et al. A lymphatic defect causes ocular hypertension and glaucoma in mice[J]. J Clin Invest 2014124(10)∶43204324. DOI: 10.1172/JCI77162 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Kasetti RB Phan TN Millar JC et al. Expression of mutant myocilin induces abnormal intracellular accumulation of selected extracellular matrix proteins in the trabecular meshwork[J]. Invest Ophthalmol Vis Sci 201657(14)∶60586069. DOI: 10.1167/iovs.16-19610 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Reinehr S Koch D Weiss M et al. Loss of retinal ganglion cells in a new genetic mouse model for primary open-angle glaucoma[J]. J Cell Mol Med 201923(8)∶54975507. DOI: 10.1111/jcmm.14433 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Sano H Namekata K Kimura A et al. Differential effects of N-acetylcysteine on retinal degeneration in two mouse models of normal tension glaucoma[J/OL]. Cell Death Dis 201910(2)∶75[2023-10-10]. https://pubmed.ncbi.nlm.nih.gov/30692515/. DOI: 10.1038/s41419-019-1365-z .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Zhang S Shao Z Liu X et al. The E50K optineurin mutation impacts autophagy-mediated degradation of TDP-43 and leads to RGC apoptosis in vivo and in vitro [J/OL]. Cell Death Discov 20217(1)∶49[2023-10-11]. https://pubmed.ncbi.nlm.nih.gov/33723228/. DOI: 10.1038/s41420-021-00432-0 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Wang F Ma F Song Y et al. Topical administration of rapamycin promotes retinal ganglion cell survival and reduces intraocular pressure in a rat glaucoma model[J/OL]. Eur J Pharmacol 2020884173369[2023-10-11]. https://pubmed.ncbi.nlm.nih.gov/32712092/. DOI: 10.1016/j.ejphar.2020.173369 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Garcia-Herranz D Rodrigo MJ Subias M et al. Novel use of PLGA microspheres to create an animal model of glaucoma with progressive neuroretinal degeneration[J/OL]. Pharmaceutics 202113(2)∶237[2023-10-11]. https://pubmed.ncbi.nlm.nih.gov/33567776/. DOI: 10.3390/pharmaceutics13020237 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Ramírez AI de Hoz R Fernández-Albarral JA et al. Time course of bilateral microglial activation in a mouse model of laser-induced glaucoma[J/OL]. Sci Rep 202010(1)∶4890[2023-10-12]. https://pubmed.ncbi.nlm.nih.gov/32184450/. DOI: 10.1038/s41598-020-61848-9 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Quigley HA Addicks EM . Chronic experimental glaucoma in primates.I.Production of elevated intraocular pressure by anterior chamber injection of autologous ghost red blood cells[J]. Invest Ophthalmol Vis Sci 198019(2)∶126136.
返回引文位置Google Scholar
百度学术
万方数据
[22]
Szabo E <x>Patk</x> <x>o</x> E Vaczy A et al. Retinoprotective effects of PACAP eye drops in microbead-induced glaucoma model in rats[J/OL]. Int J Mol Sci 202122(16)∶8825[2023-10-12]. https://pubmed.ncbi.nlm.nih.gov/34445531/. DOI: 10.3390/ijms22168825 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Mukai R Park DH Okunuki Y et al. Mouse model of ocular hypertension with retinal ganglion cell degeneration[J/OL]. PLoS One 201914(1)∶e0208713[2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/30640920/. DOI: 10.1371/journal.pone.0208713 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Claes M Santos J Masin L et al. A fair assessment of evaluation tools for the murine microbead occlusion model of glaucoma[J/OL]. Int J Mol Sci 202122(11)∶5633[2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/34073191/. DOI: 10.3390/ijms22115633 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Guo C Qu X Rangaswamy N et al. A murine glaucoma model induced by rapid in vivo photopolymerization of hyaluronic acid glycidyl methacrylate [J/OL]. PLoS One 201813(6)∶e0196529[2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/29949582/. DOI: 10.1371/journal.pone.0196529 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Chen J Sun J Yu H et al. Corrigendum:evaluation of the effectiveness of a chronic ocular hypertension mouse model induced by intracameral injection of cross-linking hydrogel[J/OL]. Front Med (Lausanne) 20218687339[2023-10-14]. https://pubmed.ncbi.nlm.nih.gov/33996869/. DOI: 10.3389/fmed.2021.687339 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Ueda J Sawaguchi S Hanyu T et al. Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink[J]. Jpn J Ophthalmol 199842(5)∶337344. DOI: 10.1016/s0021-5155(98)00026-4 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Dey A Manthey AL Chiu K et al. Methods to induce chronic ocular hypertension:reliable rodent models as a platform for cell transplantation and other therapies[J]. Cell Transplant 201827(2)∶213229. DOI: 10.1177/0963689717724793 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Ortín-Martínez A Salinas-Navarro M Nadal-Nicolás FM et al. Laser-induced ocular hypertension in adult rats does not affect non-RGC neurons in the ganglion cell layer but results in protracted severe loss of cone-photoreceptors[J]. Exp Eye Res 20151321733. DOI: 10.1016/j.exer.2015.01.006 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Boia R Salinas-Navarro M Gallego-Ortega A et al. Activation of adenosine A 3 receptor protects retinal ganglion cells from degeneration induced by ocular hypertension [J/OL]. Cell Death Dis 202011(5)∶401[2023-10-14]. https://pubmed.ncbi.nlm.nih.gov/32461578/. DOI: 10.1038/s41419-020-2593-y .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Mammone T Chidlow G Casson RJ et al. Expression and activation of mitogen-activated protein kinases in the optic nerve head in a rat model of ocular hypertension[J]. Mol Cell Neurosci 201888270291. DOI: 10.1016/j.mcn.2018.01.002 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Morrison JC Moore CG Deppmeier LM et al. A rat model of chronic pressure-induced optic nerve damage[J]. Exp Eye Res 199764(1)∶8596. DOI: 10.1006/exer.1996.0184 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Husain S Zaidi S Singh S et al. Reduction of neuroinflammation by δ-opioids via STAT3-dependent pathway in chronic glaucoma model[J/OL]. Front Pharmacol 202112601404[2023-10-14]. https://pubmed.ncbi.nlm.nih.gov/33628191/. DOI: 10.3389/fphar.2021.601404 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Morrison JC Cepurna WO Johnson EC . Modeling glaucoma in rats by sclerosing aqueous outflow pathways to elevate intraocular pressure[J]. Exp Eye Res 20151412332. DOI: 10.1016/j.exer.2015.05.012 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Shareef SR Garcia-Valenzuela E Salierno A et al. Chronic ocular hypertension following episcleral venous occlusion in rats[J]. Exp Eye Res 199561(3)∶379382. DOI: 10.1016/s0014-4835(05)80131-9 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Deng C Yao K Peng F et al. The effect of dietary vitamin K1 supplementation on trabecular meshwork and retina in a chronic ocular hypertensive rat model[J/OL]. Invest Ophthalmol Vis Sci 202061(8)∶40[2023-10-15]. https://pubmed.ncbi.nlm.nih.gov/3 2721021/ . DOI: 10.1167/iovs.61.8.40 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Wang H Song X Li M et al. The role of TLR4/NF-κB signaling pathway in activated microglia of rats with chronic high intraocular pressure and vitro scratch injury-induced microglia[J/OL]. Int Immunopharmacol 202083106395[2023-10-15]. https://pubmed.ncbi.nlm.nih.gov/32199351/. DOI: 10.1016/j.intimp.2020.106395 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Biswas S Wan KH . Review of rodent hypertensive glaucoma models[J/OL]. Acta Ophthalmol 201997(3)∶e331e340[2023-10-15]. https://pubmed.ncbi.nlm.nih.gov/30549197/. DOI: 10.1111/aos.13983 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Lee SH Shim KS Kim CY et al. Characterization of the role of autophagy in retinal ganglion cell survival over time using a rat model of chronic ocular hypertension[J/OL]. Sci Rep 202111(1)∶5767[2023-10-15]. https://pubmed.ncbi.nlm.nih.gov/33707562/. DOI: 10.1038/s41598-021-85181-x .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Liu HH He Z Nguyen CT et al. Reversal of functional loss in a rat model of chronic intraocular pressure elevation[J]. Ophthalmic Physiol Opt 201737(1)∶7181. DOI: 10.1111/opo.12331 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Tao X Sigireddi RR Westenskow PD et al. Single transient intraocular pressure elevations cause prolonged retinal ganglion cell dysfunction and retinal capillary abnormalities in mice[J/OL]. Exp Eye Res 2020201108296[2023-10-15]. https://pubmed.ncbi.nlm.nih.gov/33039455/. DOI: 10.1016/j.exer.2020.108296 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Crowston JG Kong YX Trounce IA et al. An acute intraocular pressure challenge to assess retinal ganglion cell injury and recovery in the mouse[J]. Exp Eye Res 201514138. DOI: 10.1016/j.exer.2015.03.006 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Chong RS Busoy J Tan B et al. A minimally invasive experimental model of acute ocular hypertension with acute angle closure characteristics[J/OL]. Transl Vis Sci Technol 20209(7)∶24[2023-10-16]. https://pubmed.ncbi.nlm.nih.gov/32832230/. DOI: 10.1167/tvst.9.7.24 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Tan B Gurdita A Choh V et al. Morphological and functional changes in the rat retina associated with 2 months of intermittent moderate intraocular pressure elevation[J/OL]. Sci Rep 20188(1)∶7727[2023-10-16]. https://pubmed.ncbi.nlm.nih.gov/29769654/. DOI: 10.1038/s41598-018-25938-z .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Maddineni P Kasetti RB Patel PD et al. CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma[J/OL]. Mol Neurodegener 202015(1)∶48[2023-10-16]. https://pubmed.ncbi.nlm.nih.gov/32854767/. DOI: 10.1186/s13024-020-00400-9 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Li G Lee C Agrahari V et al. In vivo measurement of trabecular meshwork stiffness in a corticosteroid-induced ocular hypertensive mouse model [J]. Proc Natl Acad Sci U S A 2019116(5)∶17141722. DOI: 10.1073/pnas.1814889116 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Chen S Zhang X The rodent model of glaucoma and its implications[J]. Asia Pac J Ophthalmol (Phila) 20154(4)∶236241. DOI: 10.1097/APO.0000000000000122 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Lee J Chan PP Zhang X et al. Latest developments in normal-pressure glaucoma:diagnosis,epidemiology,genetics,etiology,causes and mechanisms to management[J]. Asia Pac J Ophthalmol (Phila) 20198(6)∶457468. DOI: 10.1097/01.APO.0000605096.48529.9c .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Nadal-Nicolás FM Sobrado-Calvo P Jiménez-López M et al. Long-term effect of optic nerve axotomy on the retinal ganglion cell layer[J]. Invest Ophthalmol Vis Sci 201556(10)∶60956112. DOI: 10.1167/iovs.15-17195 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Agarwal R Agarwal P Rodent models of glaucoma and their applicability for drug discovery[J]. Expert Opin Drug Discov 201712(3)∶261270. DOI: 10.1080/17460441.2017.1281244 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Do JL Allahwerdy S David RC et al. Sheath-preserving optic nerve transection in rats to assess axon regeneration and interventions targetin g the retinal ganglion cell axon [J/OL]. J Vis Exp 2020,(163)∶10.3791/61748[2023-10-17]. https://pubmed.ncbi.nlm.nih.gov/32955495/. DOI: 10.3791/61748 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Davis BM Guo L Brenton J et al. Automatic quantitative analysis of experimental primary and secondary retinal neurodegeneration:implications for optic neuropathies[J/OL]. Cell Death Discov 2016216031[2023-10-17]. https://pubmed.ncbi.nlm.nih.gov/27551521/. DOI: 10.1038/cddiscovery.2016.31 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Cho HK Kim S Lee EJ et al. Neuroprotective effect of ginkgo biloba extract against hypoxic retina l ganglion cell degeneration in vitro and in vivo [J]. J Med Food 201922(8)∶771778. DOI: 10.1089/jmf.2018.4350 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Palmhof M Frank V Rappard P et al. From ganglion cell to photoreceptor layer:timeline of deterioration in a rat ischemia/reperfusion model[J/OL]. Front Cell Neurosci 201913174[2023-10-17]. https://pubmed.ncbi.nlm.nih.gov/31133806/. DOI: 10.3389/fncel.2019.00174 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Luo H Zhuang J Hu P et al. Resveratrol delays retinal ganglion cell loss and attenuates gliosis-related inflammation from ischemia-reperfusion injury[J]. Invest Ophthalmol Vis Sci 201859(10)∶38793888. DOI: 10.1167/iovs.18-23806 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
Shi H Ebrahim AS Berger EA . A contrast in pathogenic responses between C57BL/6J and BALB/cJ mice using a model of retinal injury[J]. Am J Pathol 2018188(12)∶27172728. DOI: 10.1016/j.ajpath.2018.08.010 .
返回引文位置Google Scholar
百度学术
万方数据
[57]
Opere CA Heruye S Njie-Mbye YF et al. Regulation of excitatory amino acid transmission in the retina:studies on neuroprotection[J]. J Ocul Pharmacol Ther 201834(1-2)∶107118. DOI: 10.1089/jop.2017.0085 .
返回引文位置Google Scholar
百度学术
万方数据
[58]
Lambuk L Jafri A Iezhitsa I et al. Dose-dependent effects of NMDA on retinal and optic nerve morphology in rats[J]. Int J Ophthalmol 201912(5)∶746753. DOI: 10.18240/ijo.2019.05.08 .
返回引文位置Google Scholar
百度学术
万方数据
[59]
Fiedorowicz M Choragiewicz T Thaler S et al. Tryptophan and kynurenine pathway metabolites in animal models of retinal and optic nerve damage:different dynamics of changes[J/OL]. Front Physiol 2019101254[2023-10-17]. https://pubmed.ncbi.nlm.nih.gov/31632294/. DOI: 10.3389/fphys.2019.01254 .
返回引文位置Google Scholar
百度学术
万方数据
[60]
Shen Y Liu XL Yang XL . N-methyl-D-aspartate receptors in the retina[J]. Mol Neurobiol 200634(3)∶163179. DOI: 10.1385/MN:34:3:163 .
返回引文位置Google Scholar
百度学术
万方数据
[61]
Gao L Zheng QJ Ai LQ et al. Exploration of the glutamate-mediated retinal excitotoxic damage:a rat model of retinal neurodegeneration[J]. Int J Ophthalmol 201811(11)∶17461754. DOI: 10.18240/ijo.2018.11.03 .
返回引文位置Google Scholar
百度学术
万方数据
[62]
Ko KW <x>Milbrand</x> <x>t</x> J DiAntonio A SARM1 acts downstream of neuroinflammatory and necroptotic signaling to induce axon degeneration[J/OL]. J Cell Biol 2020219(8)∶e201912047. https://pubmed.ncbi.nlm.nih.gov/32609299/. DOI: 10.1083/jcb.201912047 .
返回引文位置Google Scholar
百度学术
万方数据
[63]
Blanco R Martínez-Navarrete G Valiente-Soriano FJ et al. The S1P1 receptor-selective agonist CYM-5442 protects retinal ganglion cells in endothelin-1 induced retinal ganglion cell loss[J]. Exp Eye Res 20171643745. DOI: 10.1016/j.exer.2017.08.005 .
返回引文位置Google Scholar
百度学术
万方数据
[64]
Kodati B Stankowska DL Krishnamoorthy VR et al . Involvement of c-Jun N-terminal kinase 2 (JNK2) in endothelin-1 (ET-1) mediated neurodegeneration of retinal ganglion cells[J/OL]. Invest Ophthalmol Vis Sci 202162(6)∶13[2023-10-18]. https://pubmed.ncbi.nlm.nih.gov/33978676/. DOI: 10.1167/iovs.62.6.13 .
返回引文位置Google Scholar
百度学术
万方数据
[65]
Tsai T Grotegut P Reinehr S et al. Role of heat shock proteins in glaucoma[J/OL]. Int J Mol Sci 201920(20)∶5160[2023-10-18]. https://pubmed.ncbi.nlm.nih.gov/31635205/. DOI: 10.3390/ijms20205160 .
返回引文位置Google Scholar
百度学术
万方数据
[66]
Grotegut P Hoerdemann PJ Reinehr S et al. Heat shock protein 27 injection leads to caspase activation in the visual pathway and retinal T-cell response[J/OL]. Int J Mol Sci 202122(2)∶513[2023-10-18]. https://pubmed.ncbi.nlm.nih.gov/33419223/. DOI: 10.3390/ijms22020513 .
返回引文位置Google Scholar
百度学术
万方数据
[67]
Webber HC Bermudez JY Millar JC et al. The role of Wnt/β-catenin signaling and K-cadherin in the regulation of intraocular pressure[J]. Invest Ophthalmol Vis Sci 201859(3)∶14541466. DOI: 10.1167/iovs.17-21964 .
返回引文位置Google Scholar
百度学术
万方数据
[68]
Patsali P Kleanthous M Lederer CW . Disruptive technology:CRISPR/Cas-based tools and approaches[J]. Mol Diagn Ther 201923(2)∶187200. DOI: 10.1007/s40291-019-00391-4 .
返回引文位置Google Scholar
百度学术
万方数据
[69]
Almasieh M Levin LA . Neuroprotection in glaucoma:animal models and clinical trials[J]. Annu Rev Vis Sci 2017391120. DOI: 10.1146/annurev-vision-102016-061422 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
张旭,Email: mocdef.3ab6191gnahzux
B
所有作者均声明不存在利益冲突
C
国家自然科学基金 (81860170)
江西省自然科学基金 (20181ACG70010)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号