综述
ENGLISH ABSTRACT
小梁网生物力学性能在青光眼发病机制中的研究进展
部倩雯
潘晓晶 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20210721-00421
Research progress on the biomechanical properties of trabecular network in the pathogenesis of glaucoma
Bu Qianwen
Pan Xiaojing
Authors Info & Affiliations
Bu Qianwen
Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Qingdao Eye Hospital, Qingdao 266071, China
Pan Xiaojing
Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Qingdao Eye Hospital, Qingdao 266071, China
·
DOI: 10.3760/cma.j.cn115989-20210721-00421
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

小梁网作为房水外流通路的首个阻力部位,对眼压调控有重要影响。小梁网生物力学性能改变可能会影响滤过系统房水的排出,对原发性开角型青光眼(POAG)发病有重要意义。眼压与小梁网生物力学性能改变可能有相关性,但目前研究表明,小梁网生物力学性能主要由遗传与基因突变、年龄、细胞外基质和细胞骨架成分、溶血磷脂酸、地塞米松、Rho相关蛋白激酶抑制剂等因素影响。此外,其他眼内疾病也可能会对小梁网生物力学性能产生影响。在机械牵拉下,小梁网产生的应变可能暗示了高眼压状态下房水外流的分子机制、流出通路的调节机制及POAG的发病机制。小梁网生物力学性能研究将为青光眼早期诊断、治疗提供更有力的理论依据和实验基础。本文就小梁网生物力学测量方法、影响因素以及传感通路对小梁网细胞生物力学性能影响的研究现状进行综述,以期对POAG的病因、发病机制及治疗做进一步阐述。

小梁网;青光眼;生物力学;房水流出;传感通路
ABSTRACT

Trabecular network, as the first resistance site of the aqueous humor outflow pathway, plays an important role in the regulation of intraocular pressure.Alteration of the biomechanical properties of trabecular meshwork may affect the aqueous humor outflow of filtration system and is of great importance in the pathogenesis of primary open-angle glaucoma (POAG).There may be a correlation between intraocular pressure and mechanical properties of trabecular meshwork, but the current research shows that the mechanical properties of trabecular meshwork are mainly affected by genetic and gene mutation, age, extracellular matrix and cytoskeleton components, lysophosphatidic acid, low dexamethasone, Rho-related protein kinase inhibitors and other factors.In addition, other intraocular diseases may affect the mechanical properties of trabecular meshwork.Under mechanical traction, the strain produced by trabecular meshwork may indicate the molecular mechanism of aqueous outflow, the regulation mechanism of outflow pathway and the pathogenesis of POAG under high intraocular pressure.The biomechanical properties of trabecular meshwork will provide a more powerful theoretical and experimental basis for the early diagnosis and treatment of glaucoma.This paper reviews the status of research on trabecular meshwork biomechanical measurement methods, influencing factors and sensing pathways of trabecular meshwork cell, in order to further elaborate the etiology, pathogenesis and treatment of POAG.

Trabecular meshwork;Glaucoma;Biomechanics;Aqueous outflow;Conduction path
Pan Xiaojing, Email: mocdef.3ab61latsyrcjxnap
引用本文

部倩雯,潘晓晶. 小梁网生物力学性能在青光眼发病机制中的研究进展[J]. 中华实验眼科杂志,2024,42(06):564-568.

DOI:10.3760/cma.j.cn115989-20210721-00421

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
小梁网作为房水外流通路的首个阻力部位,对眼压调控具有重要影响。房水流出过程中50%~75%的阻力集中在小梁网内 [ 1 ],在某些因素的影响下眼压会发生持续的自然波动,如瞬目、眼球运动及房水产生的昼夜节律变化等 [ 2 ]。小梁网细胞必须不断地检测并响应这些机械力,以调整和维持正常的细胞功能,保护细胞免受机械损伤。研究表明,对人眼进行灌注的过程中,流出阻力会随着眼压升高而增加 [ 3 ]。这可能是由于眼压升高引起的眼组织形变,阻塞了流出通道。现已证明,在人类和小鼠中流出阻力与小梁网刚度之间存在显著正相关 [ 4 ]。此外,研究者对小梁网细胞施加5%~10%的机械拉伸,小梁网细胞受力后会产生多种应变,包括细胞外基质(extracellular matrix,ECM)和细胞骨架改变、诱导基因表达、细胞因子分泌和调节通路激活 [ 5 ]。在机械牵拉下,小梁网产生的应变可能提示了高眼压状态下房水外流的分子机制、流出通路的调节机制以及原发性开角型青光眼(primary open-angle glaucoma,POAG)的发病机制。本文就小梁网生物力学性能在青光眼发病机制中的研究进展进行综述。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Acott TS Vranka JA Keller KE et al. Normal and glaucomatous outflow regulation[J/OL]. Prog Retin Eye Res 202182100897[2023-09-15]. https://pubmed.ncbi.nlm.nih.gov/32795516/. DOI: 10.1016/j.preteyeres.2020.100897 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Turner DC Edmiston AM Zohner YE et al. Transient intraocular pressure fluctuations:source,magnitude,frequency,and associated mechanical energy[J]. Invest Ophthalmol Vis Sci 201960(7)∶25722582. DOI: 10.1167/iovs.19-26600 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Sherwood JM Stamer WD Overby DR . A model of the oscillatory mechanical forces in the conventional outflow pathway[J/OL]. J R Soc Interface 201916(150)∶20180652[2023-09-15]. https://pubmed.ncbi.nlm.nih.g ov/30958169/ . DOI: 10.1098/rsif.2018.0652 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Allison K Patel D Alabi O . Epidemiology of glaucoma:the past,present,and predictions for the future[J/OL]. Cureus 202012(11)∶e11686[2023-09-15]. https://pubmed.ncbi.nlm.nih.gov/33391921/. DOI: 10.7759/cureus.11686 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Saccà SC Pulliero A Izzotti A The dysfunction of the trabecular meshwork during glaucoma course[J]. J Cell Physiol 2015230(3)∶510525. DOI: 10.1002/jcp.24826 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Stamer WD Clark AF . The many faces of the trabecular meshwork cell[J]. Exp Eye Res 2017158112123. DOI: 10.1016/j.exer.2016.07.009 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Issarti I Koppen C Rozema JJ . Influence of the eye globe design on biomechanical analysis[J/OL]. Comput Biol Med 2021135104612[2023-09-16]. https://pubmed.ncbi.nlm.nih.gov/34261005/. DOI: 10.1016/j.compbiomed.2021.104612 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
王雁宋一牟博琨角膜生物力学基础[J]. 中华眼科杂志 202 1 57(2)∶156160. DOI: 10.3760/cma.j.cn112142-20201221-00834 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Wang K Read AT Sulchek T et al. Trabecular meshwork stiffness in glaucoma[J]. Exp Eye Res 2017158312. DOI: 10.1016/j.exer.2016.07.011 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Xin C Song S Wang N et al. Effects of Schlemm ' s canal expansion:biomechanics and MIGS implications [J/OL]. Life (Basel) 202111(2)∶176[2023-09-16]. https://pubmed.ncbi.nlm.nih.gov/33672433/. DOI: 10.3390/life11020176 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Lakk M Križaj D TRPV4-Rho signaling drives cytoskeletal and focal adhesion remodeling in trabecular meshwork cells[J]. Am J Physiol Cell Physiol 2021320(6)∶C1013C1030. DOI: 10.1152/ajpcell.00599.2020 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Xin C Tian N Li M et al. Mechanism of the reconstruction of aqueous outflow drainage[J]. Sci China Life Sci 201861(5)∶534540. DOI: 10.1007/s11427-017-9140-8 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Carreon T van der Merwe E Fellman RL et al. Aqueous outflow - a continuum from trabecular meshwork to episcleral veins[J]. Prog Retin Eye Res 201757108133. DOI: 10.1016/j.preteyeres.2016.12.004 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Camras LJ Stamer WD Epstein D et al. Circumferential tensile stiffness of glaucomatous trabecular meshwork[J]. Invest Ophthalmol Vis Sci 201455(2)∶814823. DOI: 10.1167/iovs.13-13091 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Andolfi L Greco S Tierno D et al. Planar AFM macro-probes to stud y the biomechanical properties of large cells and 3D cell spheroids [J]. Acta Biomater 201994505513. DOI: 10.1016/j.actbio.2019.05.072 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Fullwood NJ Hammiche A Pollock HM et al. Atomic force microscopy of the cornea and sclera[J]. Curr Eye Res 199514(7)∶529535. DOI: 10.3109/02713689508998399 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Tie J Chen D Guo J et al. Transcriptome-wide study of the response of human trabecular meshwork cells to the substrate stiffness increase[J]. J Cell Biochem 2020121(5-6)∶31123123. DOI: 10.1002/jcb.29578 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Vargas-Pinto R Gong H Vahabikashi A et al. The effect of the endothelial cell cortex on atomic force microscopy measurements[J]. Biophys J 2013105(2)∶300309. DOI: 10.1016/j.bpj.2013.05.034 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Li G Lee C Agrahari V et al. In vivo measurement of trabecular meshwork stiffness in a corticosteroid-induced ocular hypertensive mouse model [J]. Proc Natl Acad Sci U S A 2019116(5)∶17141722. DOI: 10.1073/pnas.1814889116 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Wang K Johnstone MA Xin C et al. Estimating human trabecular meshwork stiffness by numerical modeling and advanced OCT imaging[J]. Invest Ophthalmol Vis Sci 201758(11)∶48094817. DOI: 10.1167/iovs.17-22175 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Pant AD Kagemann L Schuman JS et al. An imaged-based inverse finite element method to determine in - vivo mechanical properties of the human trabecular meshwork [J]. J Model Ophthalmol 20171(3)∶100111.
返回引文位置Google Scholar
百度学术
万方数据
[22]
柴芳艾华李娟原发性开角型青光眼患者小梁细胞中GRP78和Myocilin蛋白的共表达[J]. 中华实验 眼科杂志 201735(4)∶300305. DOI: 10.3760/cma.j.issn.2095-0160.2017.04.004 .
返回引文位置Google Scholar
百度学术
万方数据
Chai F Ai H Li J et al. Co-expression of GRP78 and Myocilin in trabecular meshwork cells of primary open angle glaucoma[J]. Chin J Exp Ophthalmol 201735(4)∶300305. DOI: 10.3760/cma.j.issn.2095-0160.2017.04.004 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[23]
Morgan JT Raghunathan VK Chang YR et al. The intrinsic stiffness of human trabecular meshwork cells increases with senescence[J/OL]. Oncotarget 20156(17)∶1536215374[2023-09-17]. https://pubmed.ncbi.nlm.nih.gov/25915531/. DOI: 10.18632/oncotarget.3798 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Cavet ME Vittitow JL Impagnatiello F et al. Nitric oxide (NO):an emerging target for the treatment of glaucoma[J]. Invest Ophthalmol Vis Sci 201455(8)∶50055015. DOI: 10.1167/iovs.14-14515 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Morgan JT Raghunathan VK Chang YR et al. Wnt inhibition induces persistent increases in intrinsic stiffness of human trabecular meshwork cells[J]. Exp Eye Res 2015132174178. DOI: 10.1016/j.exer.2015.01.025 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Faralli JA Filla MS Peters DM . Role of fibronectin in primary open angle glaucoma[J/OL]. Cells 20198(12)∶1518[2023-09-17]. https://pubmed.ncbi.nlm.nih.gov/31779192/. DOI: 10.3390/cells8121518 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Gindina S Hu Y Barron AO et al. Tissue plasminogen activator attenuates outflow facility reduction in mouse model of juvenile open angle glaucoma[J/OL]. Exp Eye Res 2020199108179[2023-09-17]. https://pubmed.ncbi.nlm.nih.gov/32739292/. DOI: 10.1016/j.exer.2020.108179 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Senger F Pitaval A Ennomani H et al. Spatial integration of mechanical forces by α-actinin establishes actin network symmetry[J/OL]. J Cell Sci 2019132(22)∶jcs236604[2023-09-18]. https://pubmed.ncbi.nlm.nih.gov/31615968/. DOI: 10.1242/jcs.236604 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Ko MK Kim EK Gonzalez JM Jret al. Dose- and time-dependent effects of actomyosin inhibition on live mouse outflow resistance and aqueous drainage tissues[J/OL]. Sci Rep 2016621492[2023-09-18]. https://pubmed.ncbi.nlm.nih.gov/26884319/. DOI: 10.1038/srep21492 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Nakamura N Yamagishi R Honjo M et al. Effects of topical TGF-β1,TGF-β2,ATX,and LPA on IOP elevation and regulation of the conventional aqueous humor outflow pathway[J]. Mol Vis 2021276177.
返回引文位置Google Scholar
百度学术
万方数据
[31]
Ho L Skiba N Ullmer C et al. Lysophosphatidic acid induces ECM production via activation of the mechanosensitive YAP/TAZ transcriptional pathway in trabecular meshwork cells[J]. Invest Ophthalmol Vis Sci 201859(5)∶19691984. DOI: 10.1167/iovs.17-23702 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Peng J Wang H Wang X et al. YAP and TAZ mediate steroid-induced alterations in the trabecular meshwork cytoskeleton in human trabecular meshwork cells[J]. Int J Mol Med 201841(1)∶164172. DOI: 10.3892/ijmm.2017.3207 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Yemanyi F Baidouri H Burns AR et al. Dexamethasone and glucocorticoid-induced matrix temporally modulate key integrins,caveolins,contractility,and stiffness in human trabecular meshwork cells[J/OL]. Invest Ophthalmol Vis Sci 202061(13)∶16[2023-09-19]. https://pubmed.ncbi.nlm.nih.gov/33170205/. DOI: 10.1167/iovs.61.13.16 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Al-Humimat G Marashdeh I Daradkeh D et al. Investigational Rho kinase inhibitors for the treatment of glaucoma[J]. J Exp Pharmacol 202113197212. DOI: 10.2147/JEP.S259297 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Li G Lee C Read AT et al. Anti-fibrotic activity of a rho-kinase inhibitor restores outflow function and intraocular pressure homeostasis[J/OL]. Elife 202110e60831[2023-09-19]. https://pubmed.ncbi.nlm.nih.gov/33783352/. DOI: 10.7554/eLife.60831 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Berrino E Supuran CT . Rho-kinase inhibitors in the management of glaucoma[J]. Expert Opin Ther Pat 201929(10)∶817827. DOI: 10.1080/13543776.2019.1670812 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Qi J He W Lu Q et al. Schlemm canal and trabecular meshwork features in highly myopic eyes with early intraocular pressure elevation after cataract surgery[J]. Am J Ophthalmol 2020216193200. DOI: 10.1016/j.ajo.2020.02.005 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Filla MS Faralli JA Peotter JL et al. The role of integrins in glaucoma[J]. Exp Eye Res 2017158124136. DOI: 10.1016/j.exer.2016.05.011 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Suchyna TM . Piezo channels and GsMTx4:two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology[J]. Prog Biophys Mol Biol 2017130(Pt B)∶244253. DOI: 10.1016/j.pbiomolbio.2017.07.011 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Yarishkin O Baumann JM Križaj D Mechano-electrical transduction in trabecular meshwork involves parallel activation of TRPV4 and TREK-1 channels[J]. Channels (Austin) 201913(1)∶168171. DOI: 10.1080/19336950.2019.1618149 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Carreon TA Castellanos A Gasull X et al. Interaction of cochlin and mechanosensitive channel TREK-1 in trabecular meshwork cells influences the regulation of intraocular pressure[J/OL]. Sci Rep 20177(1)∶452[2023-09-19]. https://pubmed.ncbi.nlm.nih.gov/28352076/. DOI: 10.1038/s41598-017-00430-2 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Yarishkin O Phuong T Baumann JM et al. Piezo1 channels mediate trabecular meshwork mechanotransduction and promote aqueous fluid outflow[J]. J Physiol 2021599(2)∶571592. DOI: 10.1113/JP281011 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Gilchrist CL Leddy HA Kaye L et al. TRPV4-mediated calcium signaling in mesenchymal stem cells regulates aligned collagen matrix formation and vinculin tension[J]. Proc Natl Acad Sci U S A 2019116(6)∶19921997. DOI: 10.1073/pnas.1811095116 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Zhu W Hou F Fang J et al. The role of Piezo1 in conventional aqueous humor outflow dynamics[J/OL]. iScience 202124(2)∶102042[2023-09-20]. https://pubmed.ncbi.nlm.nih.gov/33532718/. DOI: 10.1016/j.isci.2021.102042 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Uchida T Shimizu S Yamagishi R et al. Mechanical stretch induces Ca 2+ influx and extracellu lar release of PGE 2 through Piezo1 activation in trabecular meshwork cells [J/OL]. Sci Rep 202111(1)∶4044[2023-09-20]. https://pubmed.ncbi.nlm.nih.gov/33597646/. DOI: 10.1038/s41598-021-83713-z .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
潘晓晶,Email: mocdef.3ab61latsyrcjxnap
B
所有作者均声明不存在利益冲突
C
国家自然科学基金 (82371058)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号