综述
ENGLISH ABSTRACT
青光眼视功能损伤进展评估方法
吴倩如
张纯 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20200622-00447
Advances in methods to assess progression of glaucomatous visual impairment
Wu Qianru
Zhang Chun
Authors Info & Affiliations
Wu Qianru
Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
Zhang Chun
Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
·
DOI: 10.3760/cma.j.cn115989-20200622-00447
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

青光眼是一组具有特征性视神经结构损害的眼病,其临床治疗的目标是延缓病程进展,保持视功能的生理需要。青光眼疾病进展评估方法包括结构损伤评估和视功能损伤评估。随着青光眼疾病的进展,当视网膜神经节细胞大量死亡时,一些评估结构损伤的指标将产生地板效应。因此,视功能评估成为监测中晚期青光眼疾病进展的主要方式。本文从视野检查、视觉电生理检查、对比敏感度和视功能综合评估4个方面综述视功能评估方法、应用及最新进展,并分析其评估青光眼视功能损伤进展的特点及优劣。

青光眼;视功能损伤;疾病进展评估;视野;视觉电生理
ABSTRACT

Glaucoma is a group of ocular diseases characterized by structural damage to the optic nerve, and the goal of its clinical management is to slow disease progression and preserve the physiological need for visual function.Methods to assess glaucoma disease progression include assessment of structural damage and assessment of visual function damage.As glaucomatous disease progresses, some of the indicators used to assess structural damage have a floor effect when retinal ganglion cells die in large numbers.Therefore, visual function assessment has become the main modality to monitor the progression of mid- to late-stage glaucoma.This article reviews the visual function assessment methods, applications, and recent advances from four aspects, namely, visual field examination, visual electrophysiology examination, contrast sensitivity, and comprehensive visual function assessment, and analyzes their characteristics, advantages, and disadvantages in assessing the progression of visual function damage in glaucoma.

Glaucoma;Visual impairment;Evaluation of disease progression;Visual field;Electrophysiology
Zhang Chun, Email: mocdef.oabohay1cgnahz
引用本文

吴倩如,张纯. 青光眼视功能损伤进展评估方法[J]. 中华实验眼科杂志,2024,42(06):569-575.

DOI:10.3760/cma.j.cn115989-20200622-00447

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
青光眼是一组具有特征性视神经结构损害的眼病,如视网膜神经节细胞(retinal ganglion cells,RGCs)进行性丧失、视网膜神经纤维层(retinal nerve fiber layer,RNFL)变薄等,并伴有特征性视野缺损 [ 1 ]。青光眼是不可逆盲的主要原因,至2040年,全球患病人数将增至1.118亿 [ 2 ]。青光眼极大程度影响了患者的生活质量,且随疾病进展,监测和治疗难度大大增加 [ 3 ]。因此,定期随访、及时发现疾病进展并进行有效干预尤为重要。青光眼的结构损伤往往早于功能损害 [ 4 ],但随疾病进展,当RGCs大量死亡时,一些评估结构损伤的指标,如RNFL厚度、RGCs复合体等,将产生地板效应,其数值可能不再减小,指标变异性较大,愈晚期青光眼其评估的准确性可能愈低,使其不能继续反映视神经损伤进展 [ 5 ]。因此,视功能评估成为监测中晚期青光眼疾病进展的主要方式。视功能评估方法主要有视野及视觉电生理检查、视力、对比敏感度等。本文综述视功能检查方法,并分析其评估青光眼视功能损伤进展的特点及优劣。
参考文献
[1]
Weinreb RN Aung T Medeiros FA . The pathophysiology and treatment of glaucoma:a review[J]. JAMA 2014311(18)∶19011911. DOI: 10.1001/jama.2014.3192 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Tham YC Li X Wong TY et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040:a systematic review and meta-analysis[J]. Ophthalmology 2014121(11)∶20812090. DOI: 10.1016/j.ophtha.2014.05.013 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
de Moraes CG Liebmann JM Medeiros FA et al. Management of advanced glaucoma:characterization and monitoring[J]. Surv Ophthalmol 201661(5)∶597615. DOI: 10.1016/j.survophthal.2016.03.006 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Werkmeister RM Cherecheanu AP Garhofer G et al. Imaging of retinal ganglion cells in glaucoma:pitfalls and challenges[J]. Cell Tissue Res 2013353(2)∶261268. DOI: 10.1007/s00441-013-1600-3 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Nouri-Mahdavi K Fatehi N Caprioli J Longitudinal macular structure-function relationships in glaucoma and their sources of variability[J]. Am J Ophthalmol 20192071836. DOI: 10.1016/j.ajo.2019.04.034 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Anderson DR . Standard perimetry[J]. Ophthalmol Clin North Am 200316(2)∶205212. DOI: 10.1016/s0896-1549(03)00005-1 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Quigley HA Dunkelberger GR Green WR . Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma[J]. Am J Ophthalmol 1989107(5)∶453464. DOI: 10.1016/0002-9394(89)90488-1 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
王兰刘磊林丁视野计的原理及发展[J]. 国外医学(眼科学分册) 1999,(5)∶309314.
返回引文位置Google Scholar
百度学术
万方数据
[9]
Trope GE Britton R A comparison of Goldmann and Humphrey automated perimetry in patients with glaucoma[J]. Br J Ophthalmol 198771(7)∶489493. DOI: 10.1136/bjo.71.7.489 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Nouri-Mahdavi K Caprioli J Coleman AL et al. Pointwise linear regression for evaluation of visual field outcomes and comparison with the advanced glaucoma intervention study methods[J]. Arch Ophthalmol 2005123(2)∶193199. DOI: 10.1001/archopht.123.2.193 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Nouri-Mahdavi K Selecting visual field tests and assessing visual field deterioration in glaucoma[J]. Can J Ophthalmol 201449(6)∶497505. DOI: 10.1016/j.jcjo.2014.10.002 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
O'Leary N Chauhan BC Artes PH . Visual field progression in glaucoma:estimating the overall significance of deterioration with permutation analyses of pointwise linear regression (PoPLR)[J]. Invest Ophthalmol Vis Sci 201253(11)∶67766784. DOI: 10.1167/iovs.12-10049 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Karakawa A Murata H Hirasawa H et al. Detection of progression of glaucomatous visual field damage using the point-wise method with the binomial test[J/OL]. PLoS One 20138(10)∶e78630[2023-09-15]. https://pubmed.ncbi.nlm.nih.gov/24205283/. DOI: 10.1371/journal.pone.0078630 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Cohen SL Rosen AI Tan X et al. Improvement of the visual field index in clinical glaucoma care[J]. Can J Ophthalmol 201651(6)∶445451. DOI: 10.1016/j.jcjo.2016.10.001 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Rabiolo A Morales E Mohamed L et al. Comparison of methods to detect and measure glaucomatous visual field progression[J/OL]. Transl Vis Sci Technol 20198(5)∶2[2023-09-15]. https://pubmed.ncbi.nlm.nih.gov/31555493/. DOI: 10.1167/tvst.8.5.2 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Artes PH Nicolela MT LeBlanc RP et al. Visual field progression in glaucoma:total versus pattern deviation analyses[J]. Invest Ophthalmol Vis Sci 200546(12)∶46004606. DOI: 10.1167/iovs.05-0827 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Wesselink C Heeg GP Jansonius NM . Glaucoma monitoring in a clinical setting:glaucoma progression analysis vs nonparametric progression analysis in the Groningen Longitudinal Glaucoma Study[J]. Arch Ophthalmol 2009127(3)∶270274. DOI: 10.1001/archophthalmol.2008.585 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Salazar D Morales E Rabiolo A et al. Pointwise methods to measure long-term visual field progression in glaucoma[J]. JAMA Ophthalmol 2020138(5)∶536543. DOI: 10.1001/jamaophthalmol.2020.0647 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
De Moraes CG Hood DC Thenappan A et al. 24-2 visual fields miss central defects shown on 10-2 tests in glaucoma suspects,ocular hypertensives,and early glaucoma[J]. Ophthalmology 2017124(10)∶14491456. DOI: 10.1016/j.ophtha.2017.04.021 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Nevalainen J Paetzold J Krapp E et al. The use of semi-automated kinetic perimetry (SKP) to monitor advanced glaucomatous visual field loss[J]. Graefes Arch Clin Exp Ophthalmol 2008246(9)∶13311339. DOI: 10.1007/s00417-008-0828-1 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Leisser C Palkovits S Hirnschall N et al. Reproducibility of microperimeter 3 (MP-3) microperimetry in open-angle glaucoma patients[J]. Ophthalmic Res 202063(3)∶302308. DOI: 10.1159/000501693 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Kita Y Holló G Murai A et al. Circumpapillary structure-function relationships with microperimetry and spectral domain optical coherence tomography in glaucoma:a pilot study[J]. Clin Ophthalmol 20181225352544. DOI: 10.2147/OPTH.S186739 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
田甜才瑜潘英姿微视野计对半侧视野损害的青光眼固视稳定性改变的评估价值[J]. 中华实验眼科杂志 201735(4)∶332338. DOI: 10.3760/cma.j.issn.2095-0160.2017.04.010 .
返回引文位置Google Scholar
百度学术
万方数据
Tian T Cai Y Pan YZ et al. Assessment of microperimetry on fixation stability changes in glaucomatous eyes with hemifield defect[J]. Chin J Exp Ophthalmol 201735(4)∶332338. DOI: 10.3760/cma.j.issn.2095-0160.2017.04.010 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[24]
Ramírez Estudillo JA León Higuera MI Rojas Juárez S et al. Visual rehabilitation via microperimetry in patients with geographic atrophy:a pilot study[J/OL]. Int J Retina Vitreous 2017321[2023-09-16]. https://pubmed.ncbi.nlm.nih.gov/28536656/. DOI: 10.1186/s40942-017-0071-1 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Kulkarni SV Coupland SG Stitt DM et al. Efficacy of SLO-Microperimetry and Humphrey for evaluating macular sensitivity changes in advanced glaucoma[J]. Can J Ophthalmol 201348(5)∶406412. DOI: 10.1016/j.jcjo.2013.08.001 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Johnson CA Adams AJ Casson EJ et al. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss[J]. Arch Ophthalmol 1993111(5)∶645650. DOI: 10.1001/archopht.1993.01090050079034 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Johnson CA Adams AJ Casson EJ et al. Progression of early glaucomatous visual field loss as detected by blue-on-yellow and standard white-on-white automated perimetry[J]. Arch Ophthalmol 1993111(5)∶651656. DOI: 10.1001/archopht.1993.01090050085035 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
van der Schoot J Reus NJ Colen TP et al. The ability of short-wavelength automated perimetry to predict conversion to glaucoma[J]. Ophthalmology 2010117(1)∶3034. DOI: 10.1016/j.ophtha.2009.06.046 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Ito Y Shimazawa M Chen YN et al. Morphological changes in the visual pathway induced by experimental glaucoma in Japanese monkeys[J]. Exp Eye Res 200989(2)∶246255. DOI: 10.1016/j.exer.2009.03.013 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Artes PH Nicolela MT McCormick TA et al. Effects of blur and repeated testing on sensitivity estimates with frequency doubling perimetry[J]. Invest Ophthalmol Vis Sci 200344(2)∶646652. DOI: 10.1167/iovs.02-0532 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Medeiros FA Sample PA Zangwill LM et al. A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma[J]. Invest Ophthalmol Vis Sci 200647(6)∶25202527. DOI: 10.1167/iovs.05-1441 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Hu R Wang C Racette L Comparison of matrix frequency-doubling technology perimetry and standard automated perimetry in monitoring the development of visual field defects for glaucoma suspect eyes[J/OL]. PLoS One 201712(5)∶e0178079[2023-09-17]. https://pubmed.ncbi.nlm.nih.gov/28542536/. DOI: 10.1371/journal.pone.0178079 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
仇长宇余敏斌郭疆早期原发性开角型青光眼倍频视野的改变[J]. 中华实验眼科杂志 200523(1)∶7274. DOI: 10.3760/cma.j.issn.2095-0160.2005.01.023 .
返回引文位置Google Scholar
百度学术
万方数据
Qiu CY Yu MB Guo J et al. Presentation of frequency doubling perimetry in patients with primary open-angle glaucoma[J]. Chin J Exp Ophthalmol 200523(1)∶7274. DOI: 10.3760/cma.j.issn.2095-0160.2005.01.023 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[34]
Meira-Freitas D Tatham AJ Lisboa R et al. Predicting progression of glaucoma from rates of frequency doubling technology perimetry change[J]. Ophthalmology 2014121(2)∶498507. DOI: 10.1016/j.ophtha.2013.09.016 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Kogure S Toda Y Tsukahara S Prediction of future scotoma on conventional automated static perimetry using frequency doubling technology perimetry[J]. Br J Ophthalmol 200690(3)∶347352. DOI: 10.1136/bjo.2005.077065 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Senger C Moreto R Watanabe S et al. Electrophysiology in glaucoma[J]. J Glaucoma 202029(2)∶147153. DOI: 10.1097/IJG.0000000000001422 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Wilsey LJ Fortune B Electroretinography in glaucoma diagnosis[J]. Curr Opin Ophthalmol 201627(2)∶118124. DOI: 10.1097/ICU.0000000000000241 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Turkey E Elsanabary Z Elshazly L et al. Role of pattern electroretinogram in ocular hypertension and early glaucoma[J]. J Glaucoma 201928(10)∶871877. DOI: 10.1097/IJG.0000000000001325 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Elgohary AM Elbedewy HA Saad HA et al. Pattern electroretinogram changes in patients with primary open-angle glaucoma in correlation with visual field and optical coherence tomography changes[J]. Eur J Ophthalmol 202030(6)∶13621369. DOI: 10.1177/1120672119872606 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Porciatti V Bosse B Parekh PK et al. Adaptation of the steady-state PERG in early glaucoma[J]. J Glaucoma 201423(8)∶494500. DOI: 10.1097/IJG.0b013e318285fd95 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Bode SF Jehle T Bach M Pattern electroretinogram in glaucoma suspects:new findings from a longitudinal study[J]. Invest Ophthalmol Vis Sci 201152(7)∶43004306. DOI: 10.1167/iovs.10-6381 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Rao A Singh AK Mukherjee S et al. Comparing focal and global responses on multifocal electroretinogram with retinal nerve fibre layer thickness by spectral domain optical coherence tomography in glaucoma[J]. Br J Ophthalmol 201599(4)∶500507. DOI: 10.1136/bjophthalmol-2014-305323 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Gölemez H Yıldırım N Özer A Is multifocal electroretinography an early predictor of glaucoma?[J]. Doc Ophthalmol 2016132(1)∶2737. DOI: 10.1007/s10633-016-9524-3 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Brandao LM Ledolter AA Monhart M et al. Ganglion cell layer segmentation and the two-flash multifocal electroretinogram improve structure function analysis in early glaucoma[J]. Graefes Arch Clin Exp Ophthalmol 2017255(10)∶19912000. DOI: 10.1007/s00417-017-3722-x .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Ledolter AA Monhart M Schoetzau A et al. Structural and functional changes in glaucoma:comparing the two-flash multifocal electroretinogram to optical coherence tomography and visual fields[J]. Doc Ophthalmol 2015130(3)∶197209. DOI: 10.1007/s10633-015-9482-1 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
李璐视网膜电图明视负向反应研究进展[J]. 中华实验眼科杂志 201129(3)∶276279. DOI: 10.3760/cma.j.issn.2095-0160.2011.03.021 .
返回引文位置Google Scholar
百度学术
万方数据
Li L Advanced progress of the electroretinogram photopic negative response[J]. Chin J Exp Ophthalmol 201129(3)∶276279. DOI: 10.3760/cma.j.issn.2095-0160.2011.03.021 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[47]
Cvenkel B Sustar M Perovšek D Ganglion cell loss in early glaucoma,as assessed by photopic negative response,pattern electroretinogram,and spectral-domain optical coherence tomography[J]. Doc Ophthalmol 2017135(1)∶1728. DOI: 10.1007/s10633-017-9595-9 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Machida S Kaneko M Kurosaka D Regional variations in correlation between photopic negative response of focal electoretinograms and ganglion cell complex in glaucoma[J]. Curr Eye Res 201540(4)∶439449. DOI: 10.3109/02713683.2014.922196 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Zhang X Dastiridou A Francis BA et al. Comparison of glaucoma progression detection by optical coherence tomography and visual field[J]. Am J Ophthalmol 20171846374. DOI: 10.1016/j.ajo.2017.09.020 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Parisi V Miglior S Manni G et al. Clinical ability of pattern electroretinograms and visual evoked potentials in detecting visual dysfunction in ocular hypertension and glaucoma[J]. Ophthalmology 2006113(2)∶216228. DOI: 10.1016/j.ophtha.2005.10.044 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Horn FK Jonas JB Budde WM et al. Monitoring glaucoma progression with visual evoked potentials of the blue-sensitive pathway[J]. Invest Ophthalmol Vis Sci 200243(6)∶18281834.
返回引文位置Google Scholar
百度学术
万方数据
[52]
Kanadani FN Mello PA Dorairaj SK et al. Frequency-doubling technology perimetry and multifocal visual evoked potential in glaucoma,suspected glaucoma,and control patients[J]. Clin Ophthalmol 2014813231330. DOI: 10.2147/OPTH.S64684 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Fortune B Demirel S Zhang X et al. Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma[J]. Invest Ophthalmol Vis Sci 200748(3)∶11731180. DOI: 10.1167/iovs.06-0561 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Hood DC Zhang X Multifocal ERG and VEP responses and visual fields:comparing disease-related changes[J]. Doc Ophthalmol 2000100(2-3)∶115137. DOI: 10.1023/a:1002727602212 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Hood DC Greenstein VC . Multifocal VEP and ganglion cell damage:applications and limitations for the study of glaucoma[J]. Prog Retin Eye Res 200322(2)∶201251. DOI: 10.1016/s1350-9462(02)00061-7 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
Inoue Y Kato K Kamata S et al. Reproducibility in the global indices for multifocal visual evoked potentials and Humphrey visual fields in controls and glaucomatous eyes within a 2-year period[J]. Doc Ophthalmol 2015131(2)∶115124. DOI: 10.1007/s10633-015-9506-x .
返回引文位置Google Scholar
百度学术
万方数据
[57]
Fan X Wu LL Di X et al. Applications of isolated-check visual evoked potential in early stage of open-angle glaucoma patients[J]. Chin Med J (Engl) 2018131(20)∶24392446. DOI: 10.4103/0366-6999.243564 .
返回引文位置Google Scholar
百度学术
万方数据
[58]
Xu LJ Zhang L Li SL et al. Accuracy of isolated-check visual evoked potential technique for diagnosing primary open-angle glaucoma[J]. Doc Ophthalmol 2017135(2)∶107119. DOI: 10.1007/s10633-017-9598-6 .
返回引文位置Google Scholar
百度学术
万方数据
[59]
Kolomeyer NN Drinkwater OJ Drivas E et al. Utility of the modified isolated-check visual evoked potential technique in functional glaucoma assessment[J]. J Glaucoma 202029(4)∶258263. DOI: 10.1097/IJG.0000000000001439 .
返回引文位置Google Scholar
百度学术
万方数据
[60]
Chen XW Zhao YX . Comparison of isolated-check visual evoked potential and standard automated perimetry in early glaucoma and high-risk ocular hypertension[J]. Int J Ophthalmol 201710(4)∶599604. DOI: 10.18240/ijo.2017.04.16 .
返回引文位置Google Scholar
百度学术
万方数据
[61]
Richman J Zangalli C Lu L et al. The Spaeth/Richman contrast sensitivity test (SPARCS):design,reproducibility and ability to identify patients with glaucoma[J]. Br J Ophthalmol 201599(1)∶1620. DOI: 10.1136/bjophthalmol-2014-305223 .
返回引文位置Google Scholar
百度学术
万方数据
[62]
Velten IM Korth M Horn FK et al. Temporal contrast sensitivity with peripheral and central stimulation in glaucoma diagnosis[J]. Br J Ophthalmol 199983(2)∶199205. DOI: 10.1136/bjo.83.2.199 .
返回引文位置Google Scholar
百度学术
万方数据
[63]
Fatehi N Nowroozizadeh S Henry S et al. Association of structural and functional measures with contrast sensitivity in glaucoma[J]. Am J Ophthalmol 2017178129139. DOI: 10.1016/j.ajo.2017.03.019 .
返回引文位置Google Scholar
百度学术
万方数据
[64]
Amanullah S Okudolo J Rahmatnejad K et al. The relationship between contrast sensitivity and retinal nerve fiber layer thickness in patients with glaucoma[J]. Graefes Arch Clin Exp Ophthalmol 2017255(12)∶24152422. DOI: 10.1007/s00417-017-3789-4 .
返回引文位置Google Scholar
百度学术
万方数据
[65]
Waisbourd M Sanvicente CT Coleman HM et al. Vision-related performance and quality of life of patients with rapid glaucoma progression[J]. J Glaucoma 201928(3)∶216222. DOI: 10.1097/IJG.0000000000001179 .
返回引文位置Google Scholar
百度学术
万方数据
[66]
Tatham AJ Boer ER Gracitelli CP et al. Relationship between motor vehicle collisions and results of perimetry,useful field of view,and driving simulation in drivers with glaucoma[J/OL]. Transl Vis Sci Technol 20154(3)∶5[2023-09-17]. https://pubmed.ncbi.nlm.nih.gov/26046007/. DOI: 10.1167/tvst.4.3.5 .
返回引文位置Google Scholar
百度学术
万方数据
[67]
Hohberger B Rössler CW Jünemann AG et al. Frequency dependency of temporal contrast adaptation in normal subjects[J]. Vision Res 201151(12)∶13121317. DOI: 10.1016/j.visres.2011.04.006 .
返回引文位置Google Scholar
百度学术
万方数据
[68]
Hohberger B Mißlinger S Horn F et al. Recovery time as a potential new progression parameter for patients with advanced glaucomatous optic atrophy[J]. Ophthalmologe 2017114(6)∶543548. DOI: 10.1007/s00347-016-0385-7 .
返回引文位置Google Scholar
百度学术
万方数据
[69]
Lombardi M Zenouda A Azoulay-Sebban L et al. Correlation between visual function and performance of simulated daily living activities in glaucomatous patients[J]. J Glaucoma 201827(11)∶10171024. DOI: 10.1097/IJG.0000000000001066 .
返回引文位置Google Scholar
百度学术
万方数据
[70]
Zhang Y Bian A Hang Q et al. Optical quality assessed by optical quality analysis system in Chinese primary open-angle glaucoma patients and its correlations with psychological disturbances and vision-related quality of life[J]. Ophthalmic Res 202164(1)∶1521. DOI: 10.1159/000507220 .
返回引文位置Google Scholar
百度学术
万方数据
[71]
Shakarchi AF Mihailovic A West SK et al. Vision parameters most important to functionality in glaucoma[J]. Invest Ophthalmol Vis Sci 201960(14)∶45564563. DOI: 10.1167/iovs.19-28023 .
返回引文位置Google Scholar
百度学术
万方数据
[72]
Zhou W Muir ER Chalfin S et al. MRI study of the posterior visual pathways in primary open angle glaucoma[J]. J Glaucoma 201726(2)∶173181. DOI: 10.1097/IJG.0000000000000558 .
返回引文位置Google Scholar
百度学术
万方数据
[73]
赵灿便携式视野计在青光眼中的应用进展[J]. 中华实验眼科杂志 201937(6)∶472476. DOI: 10.3760/cma.j.issn.2095-0160.2019.06.014 .
返回引文位置Google Scholar
百度学术
万方数据
Zhao C Advances in the application of portable perimetry in glaucoma[J]. Chin J Exp Ophthalmol 201937(6)∶472476. DOI: 10.3760/cma.j.issn.2095-0160.2019.06.014 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[74]
Nakanishi M Wang YT Jung TP et al. Detecting glaucoma with a portable brain-computer interface for objective assessment of visual function loss[J]. JAMA Ophthalmol 2017135(6)∶550557. DOI: 10.1001/jamaophthalmol.2017.0738 .
返回引文位置Google Scholar
百度学术
万方数据
[75]
Schulz AM Graham EC You Y et al. Performance of iPad-based threshold perimetry in glaucoma and controls[J]. Clin Exp Ophthalmol 201846(4)∶346355. DOI: 10.1111/ceo.13082 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
张纯,Email: mocdef.oabohay1cgnahz
B
所有作者均声明不存在利益冲突
C
北京市自然科学基金 (L234016)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号