综述
ENGLISH ABSTRACT
免疫出生缺陷的产前干预
游梧苹
谭博
潘鑫
赵晓东
安云飞
作者及单位信息
·
DOI: 10.3760/cma.j.cn112141-20240111-00030
Prenatal interventions for inborn errors of immunity
You Wuping
Tan Bo
Pan Xin
Zhao Xiaodong
An Yunfei
Authors Info & Affiliations
You Wuping
Tan Bo
Pan Xin
Zhao Xiaodong
An Yunfei
·
DOI: 10.3760/cma.j.cn112141-20240111-00030
531
207
0
0
1
1
PDF下载
APP内阅读
摘要

免疫出生缺陷(IEI)是一类主要由单基因突变导致的免疫细胞数量和(或)功能异常的遗传性疾病,部分IEI发病极早,甚至在宫内即出现严重的器官损害。IEI的产前干预对预防出生缺陷和提供更佳的治疗选择具有重要意义。近年来,扩展性携带者筛查、游离胎儿DNA检测、基因测序等技术在遗传性疾病的产前筛查及诊断中广泛被应用,宫内干细胞移植、宫内基因治疗等或将为遗传性疾病带去新的治疗希望,但目前针对IEI的产前干预研究有限。本文综述了IEI的产前筛查、产前诊断及可能的宫内治疗相关的研究及临床进展,以期促进临床对IEI产前干预的认知和恰当实践。

引用本文

游梧苹,谭博,潘鑫,等. 免疫出生缺陷的产前干预[J]. 中华妇产科杂志,2024,59(06):480-485.

DOI:10.3760/cma.j.cn112141-20240111-00030

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
免疫出生缺陷(inborn errors of immunity,IEI)既往称为原发性免疫缺陷病(primary immunodeficiency disease,PID),是一类主要由单基因突变导致的疾病,遗传背景和临床表现均呈高度异质性,可表现为频繁或不寻常的感染、自身免疫、自体炎症、淋巴增殖、过敏或恶性肿瘤风险增加等。2022年,国际免疫学联合会(International Union of Immunological Societies,IUIS)共纳入485种IEI疾病 1,据估计,IEI在活产儿中的总发生率为1/10 000~1/2 000 2
IEI发病早,如未能及时诊断并进行早期干预可导致多种不良结局,已有极早发病的IEI报道,例如重症联合免疫缺陷病(severe combined immunodeficiency,SCID)患儿如果没有尽早诊治,通常在出生后第1年内死亡 3;X连锁多内分泌腺病、肠病伴免疫失调综合征(immune dysregulation,polyendocrinopathy,enteropathy X-linked,IPEX) 4、家族性噬血细胞综合征(familial hemophagocytic lymphohistiocytosis,FHL) 5及X连锁慢性肉芽肿病(chronic granulomatous disease,CGD) 6可致胎儿水肿,甚至流产、死胎;自身免疫性淋巴组织增生综合征(autoimmune lymphoproliferative syndrome,ALPS)可引起胎儿肝脾肿大、心脏扩大和贫血等表现 7;CHUK基因突变可致胎儿多发性畸形 8
IEI的产前筛查、产前诊断及治疗不仅有助于识别高危妊娠,避免不必要的终止妊娠,有利于胎儿发育和健康,还是控制IEI患病率、降低死亡率、提高患儿生命质量及减少家庭和社会健康负担和经济负担的关键,建议促进医护人员和患者家属以及管理部门对IEI产前干预的认知和恰当实践。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Tangye SG , Al-Herz W , Bousfiha A ,et al. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee[J]. J Clin Immunol, 2022,42(7):1473-1507. DOI: 10.1007/s10875-022-01289-3 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
江载芳,申昆玲,沈颖. 诸福棠实用儿科学[M]. 9版. 北京:人民卫生出版社, 2022:684-684.
[3]
Fischer A , Notarangelo LD , Neven B ,et al. Severe combined immunodeficiencies and related disorders[J]. Nat Rev Dis Primers, 2015,1:15061. DOI: 10.1038/nrdp.2015.61 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Carneiro-Sampaio M , Moreira-Filho CA , Bando SY ,et al. Intrauterine IPEX[J]. Front Pediatr, 2020,8:599283. DOI: 10.3389/fped.2020.599283 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Thadchanamoorthy V , Jayatunga M , Dayasiri K ,et al. Exome sequencing detected an extremely rare case of foetal onset familial haemophagocytic lymphohistiocytosis type 5 presenting with hydrops foetalis[J]. BMC Med Genomics, 2021,14(1):50. DOI: 10.1186/s12920-021-00897-z .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Michailidis GD , Hourihane JO , Sievers R ,et al. In-utero pericardiocentesis to treat fetal hydrops caused by X-linked chronic granulomatous disease[J]. Ultrasound Obstet Gynecol, 2006,28(1):117-119. DOI: 10.1002/uog.2831 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Hansford JR , Pal M , Poplawski N ,et al. In utero and early postnatal presentation of autoimmune lymphoproliferative syndrome in a family with a novel FAS mutation[J]. Haematologica, 2013,98(4):e38-39. DOI: 10.3324/haematol.2012.070524 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Lahtela J , Nousiainen HO , Stefanovic V ,et al. Mutant CHUK and severe fetal encasement malformation[J]. N Engl J Med, 2010,363(17):1631-1637. DOI: 10.1056/NEJMoa0911698 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Lazarin GA , Haque IS , Nazareth S ,et al. An empirical estimate of carrier frequencies for 400+causal Mendelian variants: results from an ethnically diverse clinical sample of 23, 453 individuals[J]. Genet Med, 2013,15(3):178-186. DOI: 10.1038/gim.2012.114 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Xi Y , Chen G , Lei C ,et al. Expanded carrier screening in Chinese patients seeking the help of assisted reproductive technology[J]. Mol Genet Genomic Med, 2020,8(9):e1340. DOI: 10.1002/mgg3.1340 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Chen S , Zhou X , Li S ,et al. Carrier burden of over 300 diseases in Han Chinese identified by expanded carrier testing of 300 couples using assisted reproductive technology[J]. J Assist Reprod Genet, 2023,40(9):2157-2173. DOI: 10.1007/s10815-023-02876-y .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Johansen Taber K , Ben-Shachar R , Torres R ,et al. A guidelines-consistent carrier screening panel that supports equity across diverse populations[J]. Genet Med, 2022,24(1):201-213. DOI: 10.1016/j.gim.2021.09.009 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Easteal S , Arkell RM , Balboa RF ,et al. Equitable expanded carrier screening needs indigenous clinical and population genomic data[J]. Am J Hum Genet, 2020,107(2):175-182. DOI: 10.1016/j.ajhg.2020.06.005 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Thomas MR , Tutschek B , Frost A ,et al. The time of appearance and disappearance of fetal DNA from the maternal circulation[J]. Prenat Diagn, 1995,15(7):641-646. DOI: 10.1002/pd.1970150709 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Chiu RW , Chan KC , Gao Y ,et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma[J]. Proc Natl Acad Sci U S A, 2008,105(51):20458-20463. DOI: 10.1073/pnas.0810641105 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Devaney SA , Palomaki GE , Scott JA ,et al. Noninvasive fetal sex determination using cell-free fetal DNA: a systematic review and meta-analysis[J]. JAMA, 2011,306(6):627-636. DOI: 10.1001/jama.2011.1114 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Liang D , Cram DS , Tan H ,et al. Clinical utility of noninvasive prenatal screening for expanded chromosome disease syndromes[J]. Genet Med, 2019,21(9):1998-2006. DOI: 10.1038/s41436-019-0467-4 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Koumbaris G , Achilleos A , Nicolaou M ,et al. Targeted capture enrichment followed by NGS: development and validation of a single comprehensive NIPT for chromosomal aneuploidies, microdeletion syndromes and monogenic diseases[J]. Mol Cytogenet, 2019,12:48. DOI: 10.1186/s13039-019-0459-8 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Jenkins LA , Deans ZC , Lewis C ,et al. Delivering an accredited non-invasive prenatal diagnosis service for monogenic disorders and recommendations for best practice[J]. Prenat Diagn, 2018,38(1):44-51. DOI: 10.1002/pd.5197 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Xu C , Li J , Chen S ,et al. Genetic deconvolution of fetal and maternal cell-free DNA in maternal plasma enables next-generation non-invasive prenatal screening[J]. Cell Discov, 2022,8(1):109. DOI: 10.1038/s41421-022-00457-4 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Zhang J , Wu Y , Chen S ,et al. Prospective prenatal cell-free DNA screening for genetic conditions of heterogenous etiologies. Nat Med, 2024,30(2):470-479. DOI: 10.1038/s41591-023-02774-x .
返回引文位置Google Scholar
百度学术
万方数据
[22]
蔡美英,黄海龙,林娜,. 22q11微缺失综合征的产前诊断[J]. 中华医学遗传学杂志, 2017,34(2):192-195. DOI: 10.3760/cma.j.issn.1003-9406.2017.02.008 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Chen CP , Wang LK , Wu PC ,et al. Molecular cytogenetic characterization of Jacobsen syndrome (11q23.3-q25 deletion) in a fetus associated with double outlet right ventricle, hypoplastic left heart syndrome and ductus venosus agenesis on prenatal ultrasound[J]. Taiwan J Obstet Gynecol, 2017,56(1):102-105. DOI: 10.1016/j.tjog.2016.12.004 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Alfirevic Z , Navaratnam K , Mujezinovic F . Amniocentesis and chorionic villus sampling for prenatal diagnosis[J]. Cochrane Database Syst Rev, 2017,9(9):CD003252. DOI: 10.1002/14651858.CD003252.pub2 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Yadav RM , Gupta M , Dalvi A ,et al. Prenatal diagnosis for primary immunodeficiency disorders-an overview of the Indian Scenario[J]. Front Immunol, 2020,11:612316. DOI: 10.3389/fimmu.2020.612316 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Lee WI , Huang JL , Yeh KW ,et al. The effects of prenatal genetic analysis on fetuses born to carrier mothers with primary immunodeficiency diseases[J]. Ann Med, 2016,48(1-2):103-110. DOI: 10.3109/07853890.2016.1140224 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Mishra A , Gupta M , Dalvi A ,et al. Rapid flow cytometric prenatal diagnosis of primary immunodeficiency (PID) disorders[J]. J Clin Immunol, 2014,34(3):316-322. DOI: 10.1007/s10875-014-9993-7 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Cherry AM , Akkari YM , Barr KM ,et al. Diagnostic cytogenetic testing following positive noninvasive prenatal screening results: a clinical laboratory practice resource of the American College of Medical Genetics and Genomics (ACMG)[J]. Genet Med, 2017,19(8):845-850. DOI: 10.1038/gim.2017.91 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Shao L , Akkari Y , Cooley LD ,et al. Chromosomal microarray analysis, including constitutional and neoplastic disease applications, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG)[J]. Genet Med, 2021,23(10):1818-1829. DOI: 10.1038/s41436-021-01214-w .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Silva M , de Leeuw N , Mann K ,et al. European guidelines for constitutional cytogenomic analysis[J]. Eur J Hum Genet, 2019,27(1):1-16. DOI: 10.1038/s41431-018-0244-x .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Dugoff L , Norton ME , Kuller JA . The use of chromosomal microarray for prenatal diagnosis[J]. Am J Obstet Gynecol, 2016,215(4):B2-9. DOI: 10.1016/j.ajog.2016.07.016 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Lord J , McMullan DJ , Eberhardt RY ,et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study[J]. Lancet, 2019,393(10173):747-757. DOI: 10.1016/S0140-6736(18)31940-8 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Monaghan KG , Leach NT , Pekarek D ,et al. The use of fetal exome sequencing in prenatal diagnosis: a points to consider document of the American College of Medical Genetics and Genomics (ACMG)[J]. Genet Med, 2020,22(4):675-680. DOI: 10.1038/s41436-019-0731-7 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Petrovski S , Aggarwal V , Giordano JL ,et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study[J]. Lancet, 2019,393(10173):758-767. DOI: 10.1016/S0140-6736(18)32042-7 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Yang YD , Tang H , Li W ,et al. Identification by whole-exome sequencing of novel mutation c.64C > G in the BTK gene of a fetus with X-linked agammaglobulinemia[J]. Ultrasound Obstet Gynecol, 2015,45(6):753-754. DOI: 10.1002/uog.14738 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Delmonte OM , Schuetz C , Notarangelo LD . RAG deficiency: two genes, many diseases[J]. J Clin Immunol, 2018,38(6):646-655. DOI: 10.1007/s10875-018-0537-4 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Gaspar HB , Ferrando M , Caragol I ,et al. Kinase mutant Btk results in atypical X-linked agammaglobulinaemia phenotype[J]. Clin Exp Immunol, 2000,120(2):346-350. DOI: 10.1046/j.1365-2249.2000.01230.x .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Cinicola B , Uva A , Leonardi L ,et al. Case report: a case of X-linked agammaglobulinemia with high serum IgE levels and allergic rhinitis[J]. Front Immunol, 2020,11:582376. DOI: 10.3389/fimmu.2020.582376 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Rezaei M , Winter M , Zander-Fox D ,et al. A reappraisal of circulating fetal cell noninvasive prenatal testing[J]. Trends Biotechnol, 2019,37(6):632-644. DOI: 10.1016/j.tibtech.2018.11.001 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Kang HG , Kim SH , Lim JH ,et al. Continuous centrifugal microfluidics identifies the marker and size heterogeneity of circulating trophoblasts for accurate non-invasive prenatal diagnosis[J]. Sensor Actuat B-Chem, 2023,394:134331. DOI: 10.1016/j.snb.2023.134331 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Perez E . Future of therapy for inborn errors of immunity[J]. Clin Rev Allergy Immunol, 2022,63(1):75-89. DOI: 10.1007/s12016-021-08916-8 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Flake AW , Roncarolo MG , Puck JM ,et al. Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow[J]. N Engl J Med, 1996,335(24):1806-1810. DOI: 10.1056/NEJM199612123352404 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Almeida-Porada G , Atala A , Porada CD . In utero stem cell transplantation and gene therapy: rationale, history, and recent advances toward clinical application[J]. Mol Ther Methods Clin Dev, 2016,5:16020. DOI: 10.1038/mtm.2016.20 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Ekblad-Nordberg Å , Walther-Jallow L , Westgren M ,et al. Prenatal stem cell therapy for inherited diseases: past, present, and future treatment strategies[J]. Stem Cells Transl Med, 2020,9(2):148-157. DOI: 10.1002/sctm.19-0107 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Hayashi S , Peranteau WH , Shaaban AF ,et al. Complete allogeneic hematopoietic chimerism achieved by a combined strategy of in utero hematopoietic stem cell transplantation and postnatal donor lymphocyte infusion[J]. Blood, 2002,100(3):804-812. DOI: 10.1182/blood-2002-01-0016 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Taylor PA , McElmurry RT , Lees CJ ,et al. Allogenic fetal liver cells have a distinct competitive engraftment advantage over adult bone marrow cells when infused into fetal as compared with adult severe combined immunodeficient recipients[J]. Blood, 2002,99(5):1870-1872. DOI: 10.1182/blood.v99.5.1870 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Magnani A , Jouannic JM , Rosain J ,et al. Successful in utero stem cell transplantation in X-linked severe combined immunodeficiency[J]. Blood Adv, 2019,3(3):237-241. DOI: 10.1182/bloodadvances.2018023176 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Witt RG , Wang B , Nguyen QH ,et al. Depletion of murine fetal hematopoietic stem cells with c-Kit receptor and CD47 blockade improves neonatal engraftment[J]. Blood Adv, 2018,2(24):3602-3607. DOI: 10.1182/bloodadvances.2018022020 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Alhajjat A , Shaaban A . Maternal and fetal immune response to in utero stem cell transplantation[J]. Curr Stem Cell Rep, 2018,4(2):182-187. DOI: 10.1007/s40778-018-0129-5 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Wegorzewska M , Nijagal A , Wong CM ,et al. Fetal intervention increases maternal T cell awareness of the foreign conceptus and can lead to immune-mediated fetal demise[J]. J Immunol, 2014,192(4):1938-1945. DOI: 10.4049/jimmunol.1302403 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Loukogeorgakis SP , Shangaris P , Bertin E ,et al. In utero transplantation of expanded autologous amniotic fluid stem cells results in long-term hematopoietic engraftment[J]. Stem Cells, 2019,37(9):1176-1188. DOI: 10.1002/stem.3039 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Shaw SW , Blundell MP , Pipino C ,et al. Sheep CD34+amniotic fluid cells have hematopoietic potential and engraft after autologous in utero transplantation[J]. Stem Cells, 2015,33(1):122-132. DOI: 10.1002/stem.1839 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Fischer A . Gene therapy for inborn errors of immunity: past, present and future[J]. Nat Rev Immunol, 2023,23(6):397-408. DOI: 10.1038/s41577-022-00800-6 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Rossidis AC , Stratigis JD , Chadwick AC ,et al. In utero CRISPR-mediated therapeutic editing of metabolic genes[J]. Nat Med, 2018,24(10):1513-1518. DOI: 10.1038/s41591-018-0184-6 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Li T , Yang Y , Qi H ,et al. CRISPR/Cas9 therapeutics: progress and prospects[J]. Signal Transduct Target Ther, 2023,8(1):36. DOI: 10.1038/s41392-023-01309-7 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
Dilliard SA , Cheng Q , Siegwart DJ . On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles[J]. Proc Natl Acad Sci U S A, 2021,118(52):e2109256118. DOI: 10.1073/pnas.2109256118 .
返回引文位置Google Scholar
百度学术
万方数据
[57]
Riley RS , Kashyap MV , Billingsley MM ,et al. Ionizable lipid nanoparticles for in utero mRNA delivery[J]. Sci Adv, 2021,7(3):eaba1028. DOI: 10.1126/sciadv.aba1028 .
返回引文位置Google Scholar
百度学术
万方数据
[58]
Gao K , Li J , Song H ,et al. In utero delivery of mRNA to the heart, diaphragm and muscle with lipid nanoparticles[J]. Bioact Mater, 2023,25:387-398. DOI: 10.1016/j.bioactmat.2023.02.011 .
返回引文位置Google Scholar
百度学术
万方数据
[59]
Almeida-Porada G , Waddington SN , Chan J ,et al. In Utero Gene Therapy Consensus Statement from the IFeTIS[J]. Mol Ther, 2019,27(4):705-707. DOI: 10.1016/j.ymthe.2019.02.015 .
返回引文位置Google Scholar
百度学术
万方数据
[60]
Kakourou G , Kahraman S , Ekmekci GC ,et al. The clinical utility of PGD with HLA matching: a collaborative multi-centre ESHRE study[J]. Hum Reprod, 2018,33(3):520-530. DOI: 10.1093/humrep/dex384 .
返回引文位置Google Scholar
百度学术
万方数据
[61]
Carvalho F , Moutou C , Dimitriadou E ,et al. ESHRE PGT Consortium good practice recommendations for the detection of monogenic disorders[J]. Hum Reprod Open, 2020,2020(3):hoaa018. DOI: 10.1093/hropen/hoaa018 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
安云飞,Email: mocdef.nabuyila28fyna
B
游梧苹, 谭博, 潘鑫, 等. 免疫出生缺陷的产前干预[J]. 中华妇产科杂志, 2024, 59(6): 480-485. DOI: 10.3760/cma.j.cn112141-20240111-00030.
C
所有作者声明无利益冲突
D
国家重点研发计划 (2021YFC2700804)
国家自然科学基金 (82070135)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号