规范与共识
ENGLISH ABSTRACT
CT深度学习图像重建算法临床应用中国专家共识
中国医师协会放射医师分会
中华医学会影像技术分会
中国医师协会医学技师专业委员会
中国医学装备协会放射影像装备分会
作者及单位信息
·
DOI: 10.3760/cma.j.cn112149-20240111-00021
Chinese expert consensus on the clinical application of deep learning image reconstruction algorithms for CT
Chinese Association of Radiologists
Chinese Society of Imaging Technology of Chinese Medical Association
Chinese Professional Committee of Medical Technologists
Chinese Association of Radiological Equipment
Jin Zhengyu
Li Zhenlin
Gao Jianbo
Authors Info & Affiliations
Chinese Association of Radiologists
Chinese Society of Imaging Technology of Chinese Medical Association
Chinese Professional Committee of Medical Technologists
Chinese Association of Radiological Equipment
Jin Zhengyu
Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
Li Zhenlin
Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
Gao Jianbo
Department of Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
·
DOI: 10.3760/cma.j.cn112149-20240111-00021
2566
665
0
3
20
2
PDF下载
APP内阅读
摘要

图像重建算法是CT算法中的核心。近年来深度学习图像重建(DLIR)算法逐渐应用于临床,显著改善CT的图像质量和辐射剂量,在疾病的诊断中发挥重要作用。为推动 DLIR在我国的规范化应用,中国医师协会放射医师分会和医学技师专业委员会、中华医学会影像技术分会和中国医学装备协会放射影像装备分会组织专家参考大量文献并结合我国的临床实践,经过多次讨论达成以下共识,包括DLIR的技术特点和临床前实验研究,以及在头颈、心脏大血管、胸部、腹部、骨肌、儿童、急诊和能谱方面的临床应用。

体层摄影术,X线计算机;图像重建算法;深度学习
引用本文

中国医师协会放射医师分会,中华医学会影像技术分会,中国医师协会医学技师专业委员会,等. CT深度学习图像重建算法临床应用中国专家共识[J]. 中华放射学杂志,2024,58(07):697-706.

DOI:10.3760/cma.j.cn112149-20240111-00021

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
本文评分
5 [累计1个]
图像重建算法是CT成像质量和诊断结果可靠的重要保障。常用的图像重建算法有滤波反投影(filtered back projection,FBP)算法和迭代重建算法,不同算法在计算效率、准确度和数值稳定性等方面各有特点。深度学习图像重建(deep learning image reconstruction,DLIR)是一种新型的CT图像重建算法,突破了非线性迭代重建算法在图像质量方面的限制,有效降低图像噪声并提高图像质量,同时减少计算负载,能提供常规快速重建,已经应用于各种疾病的诊疗。随着DLIR的逐渐普及,其临床应用和解读成为迫切需求。中国医师协会放射医师分会和医学技师专业委员会、中华医学会影像技术分会和中国医学装备协会放射影像装备分会组织全国多家单位的多位专家在参考大量文献的基础上,结合DLIR临床应用方面的丰富经验,形成此共识。该共识从基本原理和技术应用出发,旨在论述DLIR算法在临床疾病诊疗中的应用价值和意义,提高诊断效能并给出推荐意见,为临床规范检查提供指导,更好地为患者健康服务。
参考文献
[1]
Franck C , Zhang G , Deak P ,et al. Preserving image texture while reducing radiation dose with a deep learning image reconstruction algorithm in chest CT: a phantom study[J]. Phys Med, 2021,81:86-93. DOI: 10.1016/j.ejmp.2020.12.005 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Greffier J , Hamard A , Pereira F ,et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study[J]. Eur Radiol, 2020,30(7):3951-3959. DOI: 10.1007/s00330-020-06724-w .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Toia GV , Zamora DA , Singleton M ,et al. Detectability of small low-attenuation lesions with deep learning CT image reconstruction: a 24-reader phantom study[J]. AJR Am J Roentgenol, 2023,220(2):283-295. DOI: 10.2214/AJR.22.28407 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
中华人民共和国国家卫生健康委员会. GBZ 130-2020中华人民共和国国家职业卫生标准:放射诊断放射防护要求[EB/OL].[ 2024-01-11]. http://www.nhc.gov.cn/wjw/pcrb/202004/3db780ee6ba84d699d198da17f6f74d4/files/67d5d27c85814d118009e5671b795f63.pdf.
返回引文位置Google Scholar
百度学术
万方数据
[5]
Kim I , Kang H , Yoon HJ ,et al. Deep learning-based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V)[J]. Neuroradiology, 2021,63(6):905-912. DOI: 10.1007/s00234-020-02574-x .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Huang X , Zhao W , Wang G ,et al. Improving image quality with deep learning image reconstruction in double-low-dose head CT angiography compared with standard dose and adaptive statistical iterative reconstruction[J]. Br J Radiol, 2023,96(1143):20220625. DOI: 10.1259/bjr.20220625 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Alagic Z , Diaz Cardenas J , Halldorsson K ,et al. Deep learning versus iterative image reconstruction algorithm for head CT in trauma[J]. Emerg Radiol, 2022,29(2):339-352. DOI: 10.1007/s10140-021-02012-2 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Lenfant M , Comby PO , Guillen K ,et al. Deep learning-based reconstruction vs. iterative reconstruction for quality of low-dose head-and-neck CT angiography with different tube-voltage protocols in emergency-department patients[J]. Diagnostics (Basel), 2022,12(5):1287. DOI: 10.3390/diagnostics12051287 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Lei L , Zhou Y , Guo X ,et al. The value of a deep learning image reconstruction algorithm in whole-brain computed tomography perfusion in patients with acute ischemic stroke[J]. Quant Imaging Med Surg, 2023,13(12):8173-8189. DOI: 10.21037/qims-23-547 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Jiang C , Jin D , Liu Z ,et al. Deep learning image reconstruction algorithm for carotid dual-energy computed tomography angiography: evaluation of image quality and diagnostic performance[J]. Insights Imaging, 2022,13(1):182. DOI: 10.1186/s13244-022-01308-2 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Li W , Diao K , Wen Y ,et al. High-strength deep learning image reconstruction in coronary CT angiography at 70-kVp tube voltage significantly improves image quality and reduces both radiation and contrast doses[J]. Eur Radiol, 2022,32(5):2912-2920. DOI: 10.1007/s00330-021-08424-5 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Wang M , Fan J , Shi X ,et al. A deep-learning reconstruction algorithm that improves the image quality of low-tube-voltage coronary CT angiography[J]. Eur J Radiol, 2022,146:110070. DOI: 10.1016/j.ejrad.2021.110070 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Benz DC , Ersözlü S , Mojon F ,et al. Radiation dose reduction with deep-learning image reconstruction for coronary computed tomography angiography[J]. Eur Radiol, 2022,32(4):2620-2628. DOI: 10.1007/s00330-021-08367-x .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Wang H , Wang R , Li Y ,et al. Assessment of image quality of coronary computed tomography angiography in obese patients by comparing deep learning image reconstruction with adaptive statistical iterative reconstruction veo[J]. J Comput Assist Tomogr, 2022,46(1):34-40. DOI: 10.1097/RCT.0000000000001252 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Gong H , Peng L , Du X ,et al. Artificial intelligence iterative reconstruction in computed tomography angiography: an evaluation on pulmonary arteries and aorta with routine dose settings[J]. J Comput Assist Tomogr, 2024,48(2):244-250. DOI: 10.1097/RCT.0000000000001542 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
游永春,李万江,刘洪川,. “三低”技术联合人工智能迭代重建算法在主动脉CT血管成像中的临床应用[J]. 四川大学学报(医学版), 2022,53(4):676-681. DOI: 10.12182/20220760105 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Wang Y , Wang G , Huang X ,et al. Improving image quality and resolution of coronary arteries in coronary computed tomography angiography by using high-definition scans and deep learning image reconstruction[J]. Quant Imaging Med Surg, 2023,13(5):2933-2940. DOI: 10.21037/qims-22-186 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Benz DC , Benetos G , Rampidis G ,et al. Validation of deep-learning image reconstruction for coronary computed tomography angiography: impact on noise, image quality and diagnostic accuracy[J]. J Cardiovasc Comput Tomogr, 2020,14(5):444-451. DOI: 10.1016/j.jcct.2020.01.002 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Takafuji M , Kitagawa K , Mizutani S ,et al. Deep-learning reconstruction to improve image quality of myocardial dynamic CT perfusion: comparison with hybrid iterative reconstruction[J]. Clin Radiol, 2022,77(10):e771-e775. DOI: 10.1016/j.crad.2022.06.013 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Heinrich A , Streckenbach F , Beller E ,et al. Deep learning-based image reconstruction for CT angiography of the aorta[J]. Diagnostics (Basel), 2021,11(11):2037. DOI: 10.3390/diagnostics11112037 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Heinrich A , Yücel S , Böttcher B ,et al. Improved image quality in transcatheter aortic valve implantation planning CT using deep learning-based image reconstruction[J]. Quant Imaging Med Surg, 2023,13(2):970-981. DOI: 10.21037/qims-22-639 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Wang Y , Zhan H , Hou J ,et al. Influence of deep learning image reconstruction and adaptive statistical iterative reconstruction-V on coronary artery calcium quantification[J]. Ann Transl Med, 2021,9(23):1726. DOI: 10.21037/atm-21-5548 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Rossi A , Gennari AG , Etter D ,et al. Impact of deep learning image reconstructions (DLIR) on coronary artery calcium quantification[J]. Eur Radiol, 2023,33(6):3832-3838. DOI: 10.1007/s00330-022-09287-0 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Xu C , Xu M , Yan J ,et al. The impact of deep learning reconstruction on image quality and coronary CT angiography-derived fractional flow reserve values[J]. Eur Radiol, 2022,32(11):7918-7926. DOI: 10.1007/s00330-022-08796-2 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Zhao K , Jiang B , Zhang S ,et al. Measurement accuracy and repeatability of RECIST-defined pulmonary lesions and lymph nodes in ultra-low-dose CT based on deep learning image reconstruction[J]. Cancers (Basel), 2022,14(20):5016. DOI: 10.3390/cancers14205016 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Wang H , Li LL , Shang J ,et al. Application of deep learning image reconstruction in low-dose chest CT scan[J]. Br J Radiol, 2022,95(1133):20210380. DOI: 10.1259/bjr.20210380 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
邱慎满,张贺,刘忠啸,. 深度学习重建在改善双低肺动脉CTA图像质量、评估Qanadli栓塞指数中的应用价值[J]. 中华医学杂志, 2023,103(19):1477-1482. DOI: 10.3760/cma.j.cn112137-20230313-00392 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Hata A , Yanagawa M , Yoshida Y ,et al. The image quality of deep-learning image reconstruction of chest CT images on a mediastinal window setting[J]. Clin Radiol, 2021,76(2):155.e15-155.e23. DOI: 10.1016/j.crad.2020.10.011 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Yao Y , Guo B , Li J ,et al. The influence of a deep learning image reconstruction algorithm on the image quality and auto-analysis of pulmonary nodules at ultra-low dose chest CT: a phantom study[J]. Quant Imaging Med Surg, 2022,12(5):2777-2791. DOI: 10.21037/qims-21-815 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Jiang B , Li N , Shi X ,et al. Deep learning reconstruction shows better lung nodule detection for ultra-low-dose chest CT[J]. Radiology, 2022,303(1):202-212. DOI: 10.1148/radiol.210551 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Hata A , Yanagawa M , Yoshida Y ,et al. Combination of deep learning-based denoising and iterative reconstruction for ultra-low-dose CT of the chest: image quality and Lung-RADS evaluation[J]. AJR Am J Roentgenol, 2020,215(6):1321-1328. DOI: 10.2214/AJR.19.22680 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Zhao R , Sui X , Qin R ,et al. Can deep learning improve image quality of low-dose CT: a prospective study in interstitial lung disease[J]. Eur Radiol, 2022,32(12):8140-8151. DOI: 10.1007/s00330-022-08870-9 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Ferri F , Bouzerar R , Auquier M ,et al. Pulmonary emphysema quantification at low dose chest CT using deep learning image reconstruction[J]. Eur J Radiol, 2022,152:110338. DOI: 10.1016/j.ejrad.2022.110338 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Kaga T , Noda Y , Mori T ,et al. Unenhanced abdominal low-dose CT reconstructed with deep learning-based image reconstruction: image quality and anatomical structure depiction[J]. Jpn J Radiol, 2022,40(7):703-711. DOI: 10.1007/s11604-022-01259-0 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Wang X , Zheng F , Xiao R ,et al. Comparison of image quality and lesion diagnosis in abdominopelvic unenhanced CT between reduced-dose CT using deep learning post-processing and standard-dose CT using iterative reconstruction: a prospective study[J]. Eur J Radiol, 2021,139:109735. DOI: 10.1016/j.ejrad.2021.109735 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Park J , Shin J , Min IK ,et al. Image quality and lesion detectability of lower-dose abdominopelvic CT obtained using deep learning image reconstruction[J]. Korean J Radiol, 2022,23(4):402-412. DOI: 10.3348/kjr.2021.0683 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Lyu P , Neely B , Solomon J ,et al. Effect of deep learning image reconstruction in the prediction of resectability of pancreatic cancer: diagnostic performance and reader confidence[J]. Eur J Radiol, 2021,141:109825. DOI: 10.1016/j.ejrad.2021.109825 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Cheng Y , Han Y , Li J ,et al. Low-dose CT urography using deep learning image reconstruction: a prospective study for comparison with conventional CT urography[J]. Br J Radiol, 2021,94(1120):20201291. DOI: 10.1259/bjr.20201291 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
陈楚韩,綦维维,刘晓怡,. 深度学习重建算法结合低管电压技术提高常规腹部增强CT图像小血管显示水平的价值[J]. 中华放射学杂志, 2022,56(11):1168-1174. DOI: 10.3760/cma.j.cn112149-20220218-00131 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Lyu P , Liu N , Harrawood B ,et al. Is it possible to use low-dose deep learning reconstruction for the detection of liver metastases on CT routinely?[J]. Eur Radiol, 2023,33(3):1629-1640. DOI: 10.1007/s00330-022-09206-3 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
You YC , Zhong SH , Zhang GZ ,et al. Exploring the low-dose limit for focal hepatic lesion detection with a deep learning-based CT reconstruction algorithm: a simulation study on patient images[J]. J Imaging Inform Med, 2024Mar 19. DOI: 10.1007/s10278-024-01080-3 Online ahead of print. .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Jensen CT , Gupta S , Saleh MM ,et al. Reduced-dose deep learning reconstruction for abdominal CT of liver metastases[J]. Radiology, 2022,303(1):90-98. DOI: 10.1148/radiol.211838 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
刘娜娜,吕培杰,刘星,. 深度学习图像重建算法对低辐射剂量下乏血供肝转移瘤CT图像质量及检出效能的影响[J]. 中华放射学杂志, 2022,56(11):1175-1181. DOI: 10.3760/cma.j.cn112149-20220124-00070 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Hosoi R , Yasaka K , Mizuki M ,et al. Deep learning reconstruction with single-energy metal artifact reduction in pelvic computed tomography for patients with metal hip prostheses[J]. Jpn J Radiol, 2023,41(8):863-871. DOI: 10.1007/s11604-023-01402-5 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Li Y , Jiang Y , Yu X ,et al. Deep-learning image reconstruction for image quality evaluation and accurate bone mineral density measurement on quantitative CT: a phantom-patient study[J]. Front Endocrinol(Lausanne), 2022,13:884306. DOI: 10.3389/fendo.2022.884306.eCollection2022 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Qu T , Guo Y , Li J ,et al. Iterative reconstruction vs deep learning image reconstruction: comparison of image quality and diagnostic accuracy of arterial stenosis in low-dose lower extremity CT angiography[J]. Br J Radiol, 2022,95(1140):20220196. DOI: 10.1259/bjr.20220196 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Sakai Y , Kitamoto E , Okamura K ,et al. Metal artefact reduction in the oral cavity using deep learning reconstruction algorithm in ultra-high-resolution computed tomography: a phantom study[J]. Dentomaxillofac Radiol, 2021,50(7):20200553. DOI: 10.1259/dmfr.20200553 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
王明月,吴艳,周悦,. 深度学习重建算法结合低剂量CT在机会性骨质疏松症筛查中的应用研究[J]. 中华放射医学与防护杂志, 2023,43(11):923-928. DOI: 10.3760/cma.j.cn112271-20230506-00224 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Jiang C , Zhang J , Lin W ,et al. Deep learning imaging reconstruction algorithm for carotid dual energy CT angiography:opportunistic evaluation of cervical intervertebral discs: a preliminary study[J]. J Imaging Inform Med, 2024Mar 1. DOI: 10.1007/s10278-024-01016-x Online ahead of print. .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Park C , Choo KS , Jung Y ,et al. CT iterative vs deep learning reconstruction: comparison of noise and sharpness[J]. Eur Radiol, 2021,31(5):3156-3164. DOI: 10.1007/s00330-020-07358-8 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
孙记航,段晓岷,于彤,. 儿童CT扫描辐射剂量现状调查和诊断参考水平的初步探讨[J]. 中华放射学杂志, 2022,56(10):1135-1140. DOI: 10.3760/cma.j.cn112149-20220214-00115 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Li Y , Liu X , Zhuang X ,et al. Assessment of low-dose paranasal sinus CT imaging using a new deep learning image reconstruction technique in children compared to adaptive statistical iterative reconstruction V (ASiR-V)[J]. BMC Med Imaging, 2022,22(1):106. DOI: 10.1186/s12880-022-00834-1 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Sun J , Li H , Gao J ,et al. Performance evaluation of a deep learning image reconstruction (DLIR) algorithm in "double low" chest CTA in children: a feasibility study[J]. Radiol Med, 2021,126(9):1181-1188. DOI: 10.1007/s11547-021-01384-2 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Sun J , Li H , Li J ,et al. Performance evaluation of using shorter contrast injection and 70 kVp with deep learning image reconstruction for reduced contrast medium dose and radiation dose in coronary CT angiography for children: a pilot study[J]. Quant Imaging Med Surg, 2021,11(9):4162-4171. DOI: 10.21037/qims-20-1159 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Zhang K , Shi X , Xie S ,et al. Deep learning image reconstruction in pediatric abdominal and chest computed tomography: a comparison of image quality and radiation dose[J]. Quant Imaging Med Surg, 2022,12(6):3238-3250. DOI: 10.21037/qims-21-936 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
Brady SL , Trout AT , Somasundaram E ,et al. Improving image quality and reducing radiation dose for pediatric CT by using deep learning reconstruction[J]. Radiology, 2021,298(1):180-188. DOI: 10.1148/radiol.2020202317 .
返回引文位置Google Scholar
百度学术
万方数据
[57]
Sun J , Li H , Wang B ,et al. Application of a deep learning image reconstruction (DLIR) algorithm in head CT imaging for children to improve image quality and lesion detection[J]. BMC Med Imaging, 2021,21(1):108. DOI: 10.1186/s12880-021-00637-w .
返回引文位置Google Scholar
百度学术
万方数据
[58]
魏伟安,易婷,马秋红,. 深度学习重建在儿童脑外伤低剂量颅脑CT扫描中的应用研究[J]. 中华放射学杂志, 2022,56(11):1195-1201. DOI: 10.3760/cma.j.cn112149-20220222-00141 .
返回引文位置Google Scholar
百度学术
万方数据
[59]
Son W , Kim M , Hwang JY ,et al. Comparison of a deep learning-based reconstruction algorithm with filtered back projection and iterative reconstruction algorithms for pediatric abdominopelvic CT[J]. Korean J Radiol, 2022,23(7):752-762. DOI: 10.3348/kjr.2021.0466 .
返回引文位置Google Scholar
百度学术
万方数据
[60]
孙记航,杨利新,唐晓璐,. 应用深度学习图像重建算法提升多发性大动脉炎患儿增强CT血管壁测量精度的研究[J]. 中华放射学杂志, 2021,55(12):1308-1312. DOI: 10.3760/cma.j.cn112149-20201203-01275 .
返回引文位置Google Scholar
百度学术
万方数据
[61]
Lee N , Cho HH , Lee SM ,et al. Adaptation of deep learning image reconstruction for pediatric head CT: a focus on the image quality[J]. J Korean Soc Radiol, 2023,84(1):240-252. DOI: 10.3348/jksr.2021.0073 .
返回引文位置Google Scholar
百度学术
万方数据
[62]
Lenfant M , Comby P , Guillen K ,et al. Deep learning-based reconstruction vs. iterative reconstruction for quality of low-dose head-and-neck CT angiography with different tube-voltage protocols in emergency-department patients[J]. Diagnostics, 2022,12(5):1287. DOI: 10.3390/diagnostics12051287 .
返回引文位置Google Scholar
百度学术
万方数据
[63]
Mcleavy CM , Chunara MH , Gravell RJ ,et al. The future of CT: deep learning reconstruction[J]. Clin Radiol, 2021,76(6):407-415. DOI: 10.1016/j.crad.2021.01.010 .
返回引文位置Google Scholar
百度学术
万方数据
[64]
Noda Y , Kaga T , Kawai N ,et al. Low-dose whole-body CT using deep learning image reconstruction: image quality and lesion detection[J]. Br J Radiol, 2021,94(1121):20201329. DOI: 10.1259/bjr.20201329 .
返回引文位置Google Scholar
百度学术
万方数据
[65]
Noda Y , Kawai N , Kawamura T ,et al. Radiation and iodine dose reduced thoraco-abdomino-pelvic dual-energy CT at 40 keV reconstructed with deep learning image reconstruction[J]. Br J Radiol, 2022,95(1134):20211163. DOI: 10.1259/bjr.20211163 .
返回引文位置Google Scholar
百度学术
万方数据
[66]
Xu JJ , Lönn L , Budtz-Jørgensen E ,et al. Quantitative and qualitative assessments of deep learning image reconstruction in low-keV virtual monoenergetic dual-energy CT[J]. Eur Radiol, 2022,32(10):7098-7107. DOI: 10.1007/s00330-022-09018-5 .
返回引文位置Google Scholar
百度学术
万方数据
[67]
Lyu P , Li Z , Chen Y ,et al. Deep learning reconstruction CT for liver metastases: low-dose dual-energy vs standard-dose single-energy[J]. Eur Radiol, 2024,34(1):28-38. DOI: 10.1007/s00330-023-10033-3 .
返回引文位置Google Scholar
百度学术
万方数据
[68]
Bae JS , Lee JM , Kim SW ,et al. Low-contrast-dose liver CT using low monoenergetic images with deep learning-based denoising for assessing hepatocellular carcinoma: a randomized controlled noninferiority trial[J]. Eur Radiol, 2023,33(6):4344-4354. DOI: 10.1007/s00330-022-09298-x .
返回引文位置Google Scholar
百度学术
万方数据
[69]
Thor D , Titternes R , Poludniowski G . Spatial resolution, noise properties and detectability index of a deep learning reconstruction algorithm for dual-energy CT of the abdomen[J]. Med Phys, 2023,50(5):2775-2786. DOI: 10.1002/mp.16300 .
返回引文位置Google Scholar
百度学术
万方数据
[70]
Fukutomi A , Sofue K , Ueshima E ,et al. Deep learning image reconstruction to improve accuracy of iodine quantification and image quality in dual-energy CT of the abdomen: a phantom and clinical study[J]. Eur Radiol, 2023,33(2):1388-1399. DOI: 10.1007/s00330-022-09127-1 .
返回引文位置Google Scholar
百度学术
万方数据
[71]
Noda Y , Kawai N , Nagata S ,et al. Deep learning image reconstruction algorithm for pancreatic protocol dual-energy computed tomography: image quality and quantification of iodine concentration[J]. Eur Radiol, 2022,32(1):384-394. DOI: 10.1007/s00330-021-08121-3 .
返回引文位置Google Scholar
百度学术
万方数据
[72]
吕培杰,刘娜娜,王落桐,. 深度学习重建算法优化能谱CT低单能量图像质量及检测肝脏低对比度小病灶能力[J]. 中国医学影像技术, 2023,39(1):104-108. DOI: 10.13929/j.issn.1003-3289.2023.01.024 .
返回引文位置Google Scholar
百度学术
万方数据
[73]
Fair E , Profio M , Kulkarni N ,et al. Image quality evaluation in dual-energy ct of the chest, abdomen, and pelvis in obese patients with deep learning image reconstruction[J]. J Comput Assist Tomogr, 2022,46(4):604-611. DOI: 10.1097/RCT.0000000000001316 .
返回引文位置Google Scholar
百度学术
万方数据
[74]
Noda Y , Nakamura F , Kawamura T ,et al. Deep-learning image-reconstruction algorithm for dual-energy CT angiography with reduced iodine dose: preliminary results[J]. Clin Radiol, 2022,77(2):e138-e146. DOI: 10.1016/j.crad.2021.10.014 .
返回引文位置Google Scholar
百度学术
万方数据
[75]
Zhong J , Wang L , Shen H ,et al. Improving lesion conspicuity in abdominal dual-energy CT with deep learning image reconstruction: a prospective study with five readers[J]. Eur Radiol, 2023,33(8):5331-5343. DOI: 10.1007/s00330-023-09556-6 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
金征宇,中国医学科学院北京协和医学院北京协和医院放射科,北京100730,Email: mocdef.3ab61.pivuygnehznij.rjc
B
李真林,四川大学华西医院放射科,成都610041,Email: mocdef.6ab2110dclzl
C
高剑波,郑州大学第一附属医院放射科,郑州450052,Email: mocdef.3ab61.pivobnaijoag.rjc
D
中国医师协会放射医师分会, 中华医学会影像技术分会, 中国医师协会医学技师专业委员会, 等. CT深度学习图像重建算法临床应用中国专家共识[J]. 中华放射学杂志, 2024, 58(7): 697-706. DOI: 10.3760/cma.j.cn112149-20240111-00021.
E
郑州大学第一附属医院放射科梁盼、王明月、侯平和王怡然在本共识编写中的贡献
F
所有作者声明无利益冲突
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号