综述
ENGLISH ABSTRACT
病毒样颗粒疫苗研究进展
张磊
杨艺凡
马茜
张永峰
汪洋
作者及单位信息
·
DOI: 10.3760/cma.j.cn112150-20231123-00366
Current research status of virus-like particle vaccine
Zhang Lei
Yang Yifan
Ma Xi
Zhang Yongfeng
Wang Yang
Authors Info & Affiliations
Zhang Lei
Xi′an Key Laboratory of Pathogenic Microorganism/Tumor Immunity, Department of Basic Medicine, Xi′an Medical University, Xi′an 710021, China
Yang Yifan
Xi′an Key Laboratory of Pathogenic Microorganism/Tumor Immunity, Department of Basic Medicine, Xi′an Medical University, Xi′an 710021, China
Ma Xi
Xi′an Key Laboratory of Pathogenic Microorganism/Tumor Immunity, Department of Basic Medicine, Xi′an Medical University, Xi′an 710021, China
Zhang Yongfeng
Xi′an Key Laboratory of Pathogenic Microorganism/Tumor Immunity, Department of Basic Medicine, Xi′an Medical University, Xi′an 710021, China
Wang Yang
Xi′an Key Laboratory of Pathogenic Microorganism/Tumor Immunity, Department of Basic Medicine, Xi′an Medical University, Xi′an 710021, China
·
DOI: 10.3760/cma.j.cn112150-20231123-00366
486
100
0
0
0
0
PDF下载
APP内阅读
摘要

病毒样颗粒(VLPs)是一类能够自行组装,具有重复抗原表位,能够刺激机体免疫反应且不含病毒遗传物质的蛋白纳米颗粒。在疫苗研发、药物靶向运输和生物工程材料方面VLPs具有重要的研发价值和应用潜力。本研究对VLPs疫苗诱导免疫反应的机制、现有的VLPs表达技术、防治病毒感染等方面的研究进展进行了综述,为VLPs疫苗的设计和研发提供参考。

病毒样颗粒疫苗;免疫反应;蛋白纳米颗粒
ABSTRACT

Virus-like particles (VLPs) are self-assembled protein nanoparticles with repetitive antigen epitopes, which can stimulate immune response and do not contain viral genetic materials. VLPs has important research value and application potential in vaccine development, targeted drug delivery and bioengineering materials. In this review, the mechanism of VLPs vaccine induced immune responses is discussed. The existing VLPs expression systems are summarized. The research progress of VLPs vaccine in prevention and treatment of virus infection are summarized. This review provides general reference and guidance for the design and development of antiviral VLPs vaccine.

Virus-like particle vaccine;Immune response;Protein nanoparticles
Wang Yang, Email: nc.defudabe.iyixgnaw.gnaY
引用本文

张磊,杨艺凡,马茜,等. 病毒样颗粒疫苗研究进展[J]. 中华预防医学杂志,2024,58(09):1404-1414.

DOI:10.3760/cma.j.cn112150-20231123-00366

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
本文评分
5 [累计1个]
疫苗接种能够以低成本且高效的方式应对公共卫生事件与各种流行病的传播,是人类目前最为重要的医疗干预措施之一 1。目前的疫苗种类包括减毒疫苗、灭活疫苗、核酸(DNA/RNA)疫苗和亚单位疫苗等。其中减毒或灭活疫苗含有已经减弱毒力或失去活性的病原体以模拟疾病感染从而获得免疫力;核酸疫苗递送病原体遗传物质进入人体,激活免疫系统引起免疫应答;亚单位疫苗的抗原成分为病原体的选定片段,包括抗原多肽、蛋白、多糖以及可形成病毒样颗粒(virus-like particles,VLPs)的病毒结构蛋白等。与其他类型疫苗相比,亚单位疫苗具有明确的靶抗原成分,可以弥补其他疫苗因抗原变异、毒力返祖等引起相关的安全性问题,以及严格的储存要求和针对快速突变的病原体较低功效等功能性缺陷 2 , 3。作为亚单位疫苗的一种,VLPs近些年来在生物医学与生物工程学领域扮演着重要的角色,成为疫苗开发领域极具潜力的研发方向 4
VLPs是一种能够自组装的纳米颗粒,其组成成分包括病毒衣壳蛋白、核心蛋白或包膜蛋白等能够刺激人体产生免疫力的特定病毒蛋白,分为有包膜和无包膜VLPs。VLPs同时也可以由非病毒或人工合成方式形成的具有一定对称结构的蛋白纳米颗粒 5。由于其内部不具有病毒核酸成分,因而不具有感染性。VLPs可以自组装成二十面体、杆状或球状等结构,能够通过原核细胞系,酵母细胞系统,植物细胞,动物细胞等进行重组表达的方式人工获得。VLPs最早作为在原子水平上分析病毒结构的重要工具,随着深入的研究其逐渐被用于多个领域。VLPs作为能够加载各种药物产品将其递送至特定的细胞或组织的纳米载体正在被开发成为药物递送系统 4。在疫苗研发领域,VLPs被用于抗病毒、抗菌以及肿瘤疫苗等方向的研发。VLPs可以组装成类似于天然病毒结构的空间立体构型,具有重复抗原表位,能够以高价态形式刺激机体免疫反应;纳米级别的尺寸使其能高效被免疫细胞摄取而进入淋巴系统;其表面可以展示不同来源的抗原结构,便于根据不同病原体而定制化设计疫苗;并且其具有免疫佐剂效应,能够模拟病毒感染并刺激人体的免疫系统从而诱导产生免疫保护反应。广泛的抗原来源为VLPs疫苗的开发提供了多种应用场景,能够使用不同重组表达体系进行大规模生产等优点使得VLPs疫苗的开发更具经济效益。与此同时,VLPs疫苗本身仍存在一些不足之处,如诱导CD8 +T细胞免疫的效果可能不够理想,可以通过结合使用刺激细胞免疫的佐剂或抗原来改善其效果 6。与其他类型的疫苗类似,VLPs疫苗可能会引起注射部位肿胀或疼痛,且部分接种人群可能预先感染过此类病毒,并阻碍机体对此类VLPs疫苗的免疫应答 7 , 8
本文综述了VLPs疫苗诱导产生免疫反应的机制,总结了VLPs疫苗的表达平台,列举和归纳了现阶段VLPs疫苗针对相关疾病的实际应用,对VLPs疫苗存在的优点与不足进行了概括总结,为VLPs抗病毒疫苗的设计和研发提供了参考。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Shukla VV , Shah RC . Vaccinations in Primary Care[J]. Indian J Pediatr, 2018,85(12):1118-1127. DOI: 10.1007/s12098-017-2555-2 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Vetter V , Denizer G , Friedland LR ,et al. Understanding modern-day vaccines: what you need to know[J]. Ann Med, 2018,50(2):110-120. DOI: 10.1080/07853890.2017.1407035 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Van Herck S , Feng B , Tang L . Delivery of STING agonists for adjuvanting subunit vaccines[J]. Adv Drug Deliv Rev, 2021,179:114020. DOI: 10.1016/j.addr.2021.114020 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Mohsen MO , Bachmann MF . Virus-like particle vaccinology, from bench to bedside[J]. Cell Mol Immunol, 2022,19(9):993-1011. DOI: 10.1038/s41423-022-00897-8 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Nooraei S , Bahrulolum H , Hoseini ZS ,et al. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers[J]. J Nanobiotechnology, 2021,19(1):59. DOI: 10.1186/s12951-021-00806-7 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Zhang L , Xu W , Ma X ,et al. Virus-like Particles as Antiviral Vaccine: Mechanism, Design, and Application[J]. Biotechnol Bioprocess Eng, 2023,28(1):1-16. DOI: 10.1007/s12257-022-0107-8 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Kheirvari M , Liu H , Tumban E . Virus-like Particle Vaccines and Platforms for Vaccine Development[J]. Viruses, 2023,15(5):1109. DOI: 10.3390/v15051109 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
McFall-Boegeman H , Huang X . Mechanisms of cellular and humoral immunity through the lens of VLP-based vaccines[J]. Expert Rev Vaccines, 2022,21(4):453-469. DOI: 10.1080/14760584.2022.2029415 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Mohsen MO , Zha L , Cabral-Miranda G ,et al. Major findings and recent advances in virus-like particle (VLP)-based vaccines[J]. Semin Immunol, 2017,34:123-132. DOI: 10.1016/j.smim.2017.08.014 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Al-Barwani F , Donaldson B , Pelham SJ ,et al. Antigen delivery by virus-like particles for immunotherapeutic vaccination[J]. Ther Deliv, 2014,5(11):1223-1240. DOI: 10.4155/tde.14.74 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Liu J , Dai S , Wang M ,et al. Virus like particle-based vaccines against emerging infectious disease viruses[J]. Virol Sin, 2016,31(4):279-287. DOI: 10.1007/s12250-016-3756-y .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Win SJ , Ward VK , Dunbar PR ,et al. Cross-presentation of epitopes on virus-like particles via the MHC I receptor recycling pathway[J]. Immunol Cell Biol, 2011,89(6):681-688. DOI: 10.1038/icb.2010.161 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Donaldson B , Lateef Z , Walker GF ,et al. Virus-like particle vaccines: immunology and formulation for clinical translation[J]. Expert Rev Vaccines, 2018,17(9):833-849. DOI: 10.1080/14760584.2018.1516552 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Zepeda-Cervantes J , Ramírez-Jarquín JO , Vaca L . Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs[J]. Front Immunol, 2020,11:1100. DOI: 10.3389/fimmu.2020.01100 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Mohsen MO , Gomes AC , Vogel M ,et al. Interaction of Viral Capsid-Derived Virus-Like Particles (VLPs) with the Innate Immune System[J]. Vaccines (Basel), 2018,6(3):37. DOI: 10.3390/vaccines6030037 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Roy P , Noad R . Virus-like particles as a vaccine delivery system: myths and facts[J]. Adv Exp Med Biol, 2009,655:145-158. DOI: 10.1007/978-1-4419-1132-2_11 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Ungaro F , Conte C , Quaglia F ,et al. VLPs and particle strategies for cancer vaccines[J]. Expert Rev Vaccines, 2013,12(10):1173-1193. DOI: 10.1586/14760584.2013.836909 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Han JC , Li QX , Fang JB ,et al. GII.P16-GII.2 Recombinant Norovirus VLPs Polarize Macrophages Into the M1 Phenotype for Th1 Immune Responses[J]. Front Immunol, 2021,12:781718. DOI: 10.3389/fimmu.2021.781718 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Jeong H , Seong BL . Exploiting virus-like particles as innovative vaccines against emerging viral infections[J]. J Microbiol, 2017,55(3):220-230. DOI: 10.1007/s12275-017-7058-3 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Huang X , Wang X , Zhang J ,et al. Escherichia coli-derived virus-like particles in vaccine development[J]. NPJ Vaccines, 2017,2:3. DOI: 10.1038/s41541-017-0006-8 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Naskalska A , Pyrć K . Virus Like Particles as Immunogens and Universal Nanocarriers[J]. Pol J Microbiol, 2015,64(1):3-13.
返回引文位置Google Scholar
百度学术
万方数据
[22]
Fuenmayor J , Gòdia F , Cervera L . Production of virus-like particles for vaccines[J]. N Biotechnol, 2017,39(Pt B):174-180. DOI: 10.1016/j.nbt.2017.07.010 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Vogl T , Hartner FS , Glieder A . New opportunities by synthetic biology for biopharmaceutical production in Pichia pastoris[J]. Curr Opin Biotechnol, 2013,24(6):1094-1101. DOI: 10.1016/j.copbio.2013.02.024 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Gupta R , Arora K , Roy SS ,et al. Platforms, advances, and technical challenges in virus-like particles-based vaccines[J]. Front Immunol, 2023,14:1123805. DOI: 10.3389/fimmu.2023.1123805 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Liu W , Jiang H , Zhou J ,et al. Recombinant dengue virus-like particles from Pichia pastoris: efficient production and immunological properties[J]. Virus Genes, 2010,40(1):53-59. DOI: 10.1007/s11262-009-0418-2 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Saraswat S , Athmaram TN , Parida M ,et al. Expression and Characterization of Yeast Derived Chikungunya Virus Like Particles (CHIK-VLPs) and Its Evaluation as a Potential Vaccine Candidate[J]. PLoS Negl Trop Dis, 2016,10(7):e0004782. DOI: 10.1371/journal.pntd.0004782 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Wurm FM . Production of recombinant protein therapeutics in cultivated mammalian cells[J]. Nat Biotechnol, 2004,22(11):1393-1398. DOI: 10.1038/nbt1026 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Zhu J . Mammalian cell protein expression for biopharmaceutical production[J]. Biotechnol Adv, 2012,30(5):1158-1170. DOI: 10.1016/j.biotechadv.2011.08.022 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Li C , Liu F , Liang M ,et al. Hantavirus-like particles generated in CHO cells induce specific immune responses in C57BL/6 mice[J]. Vaccine, 2010,28(26):4294-4300. DOI: 10.1016/j.vaccine.2010.04.025 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Fontana D , Kratje R , Etcheverrigaray M ,et al. Immunogenic virus-like particles continuously expressed in mammalian cells as a veterinary rabies vaccine candidate[J]. Vaccine, 2015,33(35):4238-4246. DOI: 10.1016/j.vaccine.2015.03.088 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Schwarz H , Zhang Y , Zhan C ,et al. Small-scale bioreactor supports high density HEK293 cell perfusion culture for the production of recombinant Erythropoietin[J]. J Biotechnol, 2020,309:44-52. DOI: 10.1016/j.jbiotec.2019.12.017 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Kim C , Kim JD , Seo SU . Nanoparticle and virus-like particle vaccine approaches against SARS-CoV-2[J]. J Microbiol, 2022,60(3):335-346. DOI: 10.1007/s12275-022-1608-z .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Felberbaum RS . The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors[J]. Biotechnol J, 2015,10(5):702-714. DOI: 10.1002/biot.201400438 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Daniell H , Rai V , Xiao Y . Cold chain and virus-free oral polio booster vaccine made in lettuce chloroplasts confers protection against all three poliovirus serotypes[J]. Plant Biotechnol J, 2019,17(7):1357-1368. DOI: 10.1111/pbi.13060 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Nakahira Y , Mizuno K , Yamashita H ,et al. Mass Production of Virus-Like Particles Using Chloroplast Genetic Engineering for Highly Immunogenic Oral Vaccine Against Fish Disease[J]. Front Plant Sci, 2021,12:717952. DOI: 10.3389/fpls.2021.717952 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Shirbaghaee Z , Bolhassani A . Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems[J]. Biopolymers, 2016,105(3):113-132. DOI: 10.1002/bip.22759 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Harrison BD , Wilson TM . Milestones in the research on tobacco mosaic virus[J]. Philos Trans R Soc Lond B Biol Sci, 1999,354(1383):521-529. DOI: 10.1098/rstb.1999.0403 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Rasor BJ , Vögeli B , Landwehr GM ,et al. Toward sustainable, cell-free biomanufacturing[J]. Curr Opin Biotechnol, 2021,69:136-144. DOI: 10.1016/j.copbio.2020.12.012 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Hu VT , Kamat NP . Cell-free protein synthesis systems for vaccine design and production[J]. Curr Opin Biotechnol, 2023,79:102888. DOI: 10.1016/j.copbio.2022.102888 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Tinafar A , Jaenes K , Pardee K . Synthetic Biology Goes Cell-Free[J]. BMC Biol, 2019,17(1):64. DOI: 10.1186/s12915-019-0685-x .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Taheri T , Seyed N , Mizbani A ,et al. Leishmania-based expression systems[J]. Appl Microbiol Biotechnol, 2016,100(17):7377-7385. DOI: 10.1007/s00253-016-7712-4 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Pattyn J , Hendrickx G , Vorsters A ,et al. Hepatitis B Vaccines[J]. J Infect Dis, 2021,224(12Suppl 2):S343-S351. DOI: 10.1093/infdis/jiaa668 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Zuckerman JN , Zuckerman AJ , Symington I ,et al. Evaluation of a new hepatitis B triple-antigen vaccine in inadequate responders to current vaccines[J]. Hepatology, 2001,34(4Pt 1):798-802. DOI: 10.1053/jhep.2001.27564 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Cai X , Zheng W , Pan S ,et al. A virus-like particle of the hepatitis B virus preS antigen elicits robust neutralizing antibodies and T cell responses in mice[J]. Antiviral Res, 2018,149:48-57. DOI: 10.1016/j.antiviral.2017.11.007 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Mobini S , Chizari M , Mafakher L ,et al. Computational Design of a Novel VLP-Based Vaccine for Hepatitis B Virus[J]. Front Immunol, 2020,11:2074. DOI: 10.3389/fimmu.2020.02074 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Joe C , Chatterjee S , Lovrecz G ,et al. Glycoengineered hepatitis B virus-like particles with enhanced immunogenicity[J]. Vaccine, 2020,38(22):3892-3901. DOI: 10.1016/j.vaccine.2020.03.007 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Whitacre DC , Peters CJ , Sureau C ,et al. Designing a therapeutic hepatitis B vaccine to circumvent immune tolerance[J]. Hum Vaccin Immunother, 2020,16(2):251-268. DOI: 10.1080/21645515.2019.1689745 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Huang J , Liao Q , Ooi MH ,et al. Epidemiology of Recurrent Hand, Foot and Mouth Disease, China, 2008-2015[J]. Emerg Infect Dis, 2018,24(3):432-442. DOI: 10.3201/eid2403.171303 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Zhu P , Ji W , Li D ,et al. Current status of hand-foot-and-mouth disease[J]. J Biomed Sci, 2023,30(1):15. DOI: 10.1186/s12929-023-00908-4 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Wang Z , Zhou C , Gao F ,et al. Preclinical evaluation of recombinant HFMD vaccine based on enterovirus 71 (EV71) virus-like particles (VLP): Immunogenicity, efficacy and toxicology[J]. Vaccine, 2021,39(31):4296-4305. DOI: 10.1016/j.vaccine.2021.06.031 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Cao L , Mao F , Pang Z ,et al. Protective effect of enterovirus-71 (EV71) virus-like particle vaccine against lethal EV71 infection in a neonatal mouse model[J]. Mol Med Rep, 2015,12(2):2473-2480. DOI: 10.3892/mmr.2015.3680 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Zhao H , Li HY , Han JF ,et al. Novel recombinant chimeric virus-like particle is immunogenic and protective against both enterovirus 71 and coxsackievirus A16 in mice[J]. Sci Rep, 2015,5:7878. DOI: 10.1038/srep07878 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Kim HJ , Son HS , Lee SW ,et al. Efficient expression of enterovirus 71 based on virus-like particles vaccine[J]. PLoS One, 2019,14(3):e0210477. DOI: 10.1371/journal.pone.0210477 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Krug PW , Wang L , Shi W ,et al. EV-D68 virus-like particle vaccines elicit cross-clade neutralizing antibodies that inhibit infection and block dissemination[J]. Sci Adv, 2023,9(20):eadg6076. DOI: 10.1126/sciadv.adg6076 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Xu Y , Ma S , Huang Y ,et al. Virus-like particle vaccines for poliovirus types 1, 2, and 3 with enhanced thermostability expressed in insect cells[J]. Vaccine, 2019,37(17):2340-2347. DOI: 10.1016/j.vaccine.2019.03.031 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
Bahar MW , Porta C , Fox H ,et al. Mammalian expression of virus-like particles as a proof of principle for next generation polio vaccines[J]. NPJ Vaccines, 2021,6(1):5. DOI: 10.1038/s41541-020-00267-3 .
返回引文位置Google Scholar
百度学术
万方数据
[57]
Pielnaa P , Al-Saadawe M , Saro A ,et al. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development[J]. Virology, 2020,543:34-42. DOI: 10.1016/j.virol.2020.01.015 .
返回引文位置Google Scholar
百度学术
万方数据
[58]
Mittal S , Federman HG , Sievert D ,et al. The Neurobiology of Modern Viral Scourges: ZIKV and COVID-19[J]. Neuroscientist, 2022,28(5):438-452. DOI: 10.1177/10738584211009149 .
返回引文位置Google Scholar
百度学术
万方数据
[59]
Liu Y , Liu J , Du S ,et al. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes[J]. Nature, 2017,545(7655):482-486. DOI: 10.1038/nature22365 .
返回引文位置Google Scholar
百度学术
万方数据
[60]
Garg H , Mehmetoglu-Gurbuz T , Joshi A . Recent Advances in Zika Virus Vaccines[J]. Viruses, 2018,10(11):631. DOI: 10.3390/v10110631 .
返回引文位置Google Scholar
百度学术
万方数据
[61]
Cimica V , Galarza JM , Rashid S ,et al. Current development of Zika virus vaccines with special emphasis on virus-like particle technology[J]. Expert Rev Vaccines, 2021,20(11):1483-1498. DOI: 10.1080/14760584.2021.1945447 .
返回引文位置Google Scholar
百度学术
万方数据
[62]
Boigard H , Alimova A , Martin GR ,et al. Zika virus-like particle (VLP) based vaccine[J]. PLoS Negl Trop Dis, 2017,11(5):e0005608. DOI: 10.1371/journal.pntd.0005608 .
返回引文位置Google Scholar
百度学术
万方数据
[63]
Vang L , Morello CS , Mendy J ,et al. Zika virus-like particle vaccine protects AG129 mice and rhesus macaques against Zika virus[J]. PLoS Negl Trop Dis, 2021,15(3):e0009195. DOI: 10.1371/journal.pntd.0009195 .
返回引文位置Google Scholar
百度学术
万方数据
[64]
Carrera J , Aktepe TE , Earnest L ,et al. Adenovirus vector produced Zika virus-like particles induce a long-lived neutralising antibody response in mice[J]. Vaccine, 2023,41(33):4888-4898. DOI: 10.1016/j.vaccine.2023.06.068 .
返回引文位置Google Scholar
百度学术
万方数据
[65]
Cimica V , Williams S , Adams-Fish D ,et al. Zika Virus-Like Particle (VLP) vaccine displaying Envelope (E) protein CD loop antigen elicits protective and specific immune response in a murine model[J]. Biochem Biophys Res Commun, 2020,529(3):805-811. DOI: 10.1016/j.bbrc.2020.05.161 .
返回引文位置Google Scholar
百度学术
万方数据
[66]
Diamos AG , Pardhe MD , Sun H ,et al. Codelivery of improved immune complex and virus-like particle vaccines containing Zika virus envelope domain Ⅲ synergistically enhances immunogenicity[J]. Vaccine, 2020,38(18):3455-3463. DOI: 10.1016/j.vaccine.2020.02.089 .
返回引文位置Google Scholar
百度学术
万方数据
[67]
Soliman M , Oredein O , Dass CR . Update on Safety and Efficacy of HPV Vaccines: Focus on Gardasil[J]. Int J Mol Cell Med, 2021,10(2):101-113. DOI: 10.22088/IJMCM.BUMS.10.2.101 .
返回引文位置Google Scholar
百度学术
万方数据
[68]
Roden R , Stern PL . Opportunities and challenges for human papillomavirus vaccination in cancer[J]. Nat Rev Cancer, 2018,18(4):240-254. DOI: 10.1038/nrc.2018.13 .
返回引文位置Google Scholar
百度学术
万方数据
[69]
Kuter BJ , Garland SM , Giuliano AR ,et al. Current and future vaccine clinical research with the licensed 2-, 4-, and 9-valent VLP HPV vaccines: What′s ongoing, what′s needed?[J]. Prev Med, 2021,144:106321. DOI: 10.1016/j.ypmed.2020.106321 .
返回引文位置Google Scholar
百度学术
万方数据
[70]
Petrosky E , Bocchini JA Jr, Hariri S ,et al. Use of 9-valent human papillomavirus (HPV) vaccine: updated HPV vaccination recommendations of the advisory committee on immunization practices[J]. MMWR Morb Mortal Wkly Rep, 2015,64(11):300-304.
返回引文位置Google Scholar
百度学术
万方数据
[71]
Dewi KS , Chairunnisa S , Swasthikawati S ,et al. Production of codon-optimized Human papillomavirus type 52 L1 virus-like particles in Pichia pastoris BG10 expression system[J]. Prep Biochem Biotechnol, 2023,53(2):148-156. DOI: 10.1080/10826068.2022.2048262 .
返回引文位置Google Scholar
百度学术
万方数据
[72]
Li M , Liang Z , Chen C ,et al. Virus-Like Particle-Templated Silica-Adjuvanted Nanovaccines with Enhanced Humoral and Cellular Immunity[J]. ACS Nano, 2022,16(7):10482-10495. DOI: 10.1021/acsnano.2c01283 .
返回引文位置Google Scholar
百度学术
万方数据
[73]
Zhai L , Peabody J , Pang YS ,et al. A novel candidate HPV vaccine: MS2 phage VLP displaying a tandem HPV L2 peptide offers similar protection in mice to Gardasil-9[J]. Antiviral Res, 2017,147:116-123. DOI: 10.1016/j.antiviral.2017.09.012 .
返回引文位置Google Scholar
百度学术
万方数据
[74]
Qian C , Yang Y , Xu Q ,et al. Characterization of an Escherichia coli-derived triple-type chimeric vaccine against human papillomavirus types 39, 68 and 70[J]. NPJ Vaccines, 2022,7(1):134. DOI: 10.1038/s41541-022-00557-y .
返回引文位置Google Scholar
百度学术
万方数据
[75]
Zhang X , Meng D , Li H ,et al. Validation of Luminex immunological and competitive Luminex immunological assays for clinical immunogenicity assessment of a 14-valent recombinant human papillomavirus vaccine[J]. J Med Virol, 2023,95(8):e29050. DOI: 10.1002/jmv.29050 .
返回引文位置Google Scholar
百度学术
万方数据
[76]
Olczak P , Matsui K , Wong M ,et al. RG2-VLP: a Vaccine Designed to Broadly Protect against Anogenital and Skin Human Papillomaviruses Causing Human Cancer[J]. J Virol, 2022,96(13):e0056622. DOI: 10.1128/jvi.00566-22 .
返回引文位置Google Scholar
百度学术
万方数据
[77]
Pushko P , Tretyakova I . Influenza Virus Like Particles (VLPs): Opportunities for H7N9 Vaccine Development[J]. Viruses, 2020,12(5):518. DOI: 10.3390/v12050518 .
返回引文位置Google Scholar
百度学术
万方数据
[78]
Quan FS , Lee YT , Kim KH ,et al. Progress in developing virus-like particle influenza vaccines[J]. Expert Rev Vaccines, 2016,15(10):1281-1293. DOI: 10.1080/14760584.2016.1175942 .
返回引文位置Google Scholar
百度学术
万方数据
[79]
Smith T , O′Kennedy MM , Wandrag D ,et al. Efficacy of a plant-produced virus-like particle vaccine in chickens challenged with Influenza A H6N2 virus[J]. Plant Biotechnol J, 2020,18(2):502-512. DOI: 10.1111/pbi.13219 .
返回引文位置Google Scholar
百度学术
万方数据
[80]
Li M , Guo P , Chen C ,et al. Bacteriophage T4 Vaccine Platform for Next-Generation Influenza Vaccine Development[J]. Front Immunol, 2021,12:745625. DOI: 10.3389/fimmu.2021.745625 .
返回引文位置Google Scholar
百度学术
万方数据
[81]
Kim KH , Lee YT , Park S ,et al. Neuraminidase expressing virus-like particle vaccine provides effective cross protection against influenza virus[J]. Virology, 2019,535:179-188. DOI: 10.1016/j.virol.2019.07.008 .
返回引文位置Google Scholar
百度学术
万方数据
[82]
Smith GE , Flyer DC , Raghunandan R ,et al. Development of influenza H7N9 virus like particle (VLP) vaccine: homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus[J]. Vaccine, 2013,31(40):4305-4313. DOI: 10.1016/j.vaccine.2013.07.043 .
返回引文位置Google Scholar
百度学术
万方数据
[83]
Hendin HE , Lavoie PO , Gravett JM ,et al. Elimination of receptor binding by influenza hemagglutinin improves vaccine-induced immunity[J]. NPJ Vaccines, 2022,7(1):42. DOI: 10.1038/s41541-022-00463-3 .
返回引文位置Google Scholar
百度学术
万方数据
[84]
Nerome K , Imagawa T , Sugita S ,et al. The potential of a universal influenza virus-like particle vaccine expressing a chimeric cytokine[J]. Life Sci Alliance, 2023,6(1):e202201548. DOI: 10.26508/lsa.202201548 .
返回引文位置Google Scholar
百度学术
万方数据
[85]
Imagawa T , Arasaki Y , Maegawa K ,et al. Advancing usability of an influenza hemagglutinin virus-like particle vaccine expressing a chimeric cytokine[J]. Virol J, 2023,20(1):102. DOI: 10.1186/s12985-023-02076-1 .
返回引文位置Google Scholar
百度学术
万方数据
[86]
Wang Z , Li Z , Shi W ,et al. A SARS-CoV-2 and influenza double hit vaccine based on RBD-conjugated inactivated influenza A virus[J]. Sci Adv, 2023,9(25):eabo4100. DOI: 10.1126/sciadv.abo4100 .
返回引文位置Google Scholar
百度学术
万方数据
[87]
Yadav T , Kumar S , Mishra G ,et al. Tracking the COVID-19 vaccines: The global landscape[J]. Hum Vaccin Immunother, 2023,19(1):2191577. DOI: 10.1080/21645515.2023.2191577 .
返回引文位置Google Scholar
百度学术
万方数据
[88]
Yilmaz IC , Ipekoglu EM , Bulbul A ,et al. Development and preclinical evaluation of virus-like particle vaccine against COVID-19 infection[J]. Allergy, 2022,77(1):258-270. DOI: 10.1111/all.15091 .
返回引文位置Google Scholar
百度学术
万方数据
[89]
Volkmann A , Koopman G , Mooij P ,et al. A Capsid Virus-Like Particle-Based SARS-CoV-2 Vaccine Induces High Levels of Antibodies and Protects Rhesus Macaques[J]. Front Immunol, 2022,13:857440. DOI: 10.3389/fimmu.2022.857440 .
返回引文位置Google Scholar
百度学术
万方数据
[90]
Ward BJ , Gobeil P , Séguin A ,et al. Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19[J]. Nat Med, 2021,27(6):1071-1078. DOI: 10.1038/s41591-021-01370-1 .
返回引文位置Google Scholar
百度学术
万方数据
[91]
Ortega-Rivera OA , Shin MD , Chen A ,et al. Trivalent Subunit Vaccine Candidates for COVID-19 and Their Delivery Devices[J]. J Am Chem Soc, 2021,143(36):14748-14765. DOI: 10.1021/jacs.1c06600 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
汪洋,Email: nc.defudabe.iyixgnaw.gnay
B
所有作者声明无利益冲突
C
国家自然科学基金委面上项目 (32070069)
陕西省教育厅重点实验室项目 (20JS140)
西安医学院博士启动项目 (2020DOC20)
国家级大学生创新创业训练计划项目 (202311840017)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号