A research of omics-based biological aging clocks and their applications
Zhu Ziwei
Cheng Shanshan
Cheng Xiang
Chen Weihong
Wang Chaolong
Authors Info & Affiliations
Zhu Ziwei
Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Cheng Shanshan
Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Cheng Xiang
Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
Chen Weihong
Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Wang Chaolong
Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Aging, a process of functional decline with the increase of chronological age, is a major risk factor for chronic diseases. Aging shows significant individual differences, which is influenced by both genetic and environmental factors. Accurate measurement of physiological age helps identify individuals with accelerated aging and those at high risk for chronic diseases and mortality, which would promote individual health management and precision medicine for healthy aging. In this paper, we summarize the omics-based aging clocks and discuss their current and future applications.
No content published by the journals of Chinese Medical Association may be reproduced or abridged without authorization. Please do not use or copy the layout and design of the journals without permission.
All articles published represent the opinions of the authors, and do not reflect the official policy of the Chinese Medical Association or the Editorial Board, unless this is clearly specified.
Wang LM , Chen ZH , Zhang M ,et al. Study of the prevalence and disease burden of chronic disease in the elderly in China[J]. Chin J Epidemiol, 2019,40(3):277-283. DOI:
10.3760/cma.j.issn.0254-6450.2019.03.005
.
Goto CitationGoogle ScholarBaidu ScholarWanfang Data
[2]
Timmers PRHJ , Wilson JF , Joshi PK ,et al. Multivariate genomic scan implicates novel loci and haem metabolism in human ageing[J]. Nat Commun, 2020,11(1):3570. DOI:
10.1038/s41467-020-17312-3
.
Bae CY , Kang YG , Kim S ,et al. Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters[J]. Arch Gerontol Geriatr, 2008,47(2):253-265. DOI:
10.1016/j.archger.2007.08.009
.
Dubina TL , Mints AY , Zhuk EV . Biological age and its estimation. Ⅲ. Introduction of a correction to the multiple regression model of biological age in cross-sectional and longitudinal studies[J]. Exp Gerontol, 1984,19(2):133-143. DOI:
10.1016/0531-5565(84)90016-0
.
Lee MS , Tanaka K , Nakagaichi M ,et al. The relative utility of health-related fitness tests and skilled motor performance tests as measures of biological age in Japanese men[J]. Appl Human Sci, 1996,15(3):97-104. DOI:
10.2114/jpa.15.97
.
Goggins WB , Woo J , Sham A ,et al. Frailty index as a measure of biological age in a Chinese population[J]. J Gerontol A Biol Sci Med Sci, 2005,60(8):1046-1051. DOI:
10.1093/gerona/60.8.1046
.
Cho IH , Park KS , Lim CJ . An empirical comparative study on biological age estimation algorithms with an application of work ability index (WAI)[J]. Mech Ageing Dev, 2010,131(2):69-78. DOI:
10.1016/j.mad.2009.12.001
.
Lu AT , Quach A , Wilson JG ,et al. DNA methylation GrimAge strongly predicts lifespan and healthspan[J]. Aging (Albany NY), 2019,11(2):303-327. DOI:
10.18632/aging.101684
.
Levine ME , Lu AT , Quach A ,et al. An epigenetic biomarker of aging for lifespan and healthspan[J]. Aging (Albany NY), 2018,10(4):573-591. DOI:
10.18632/aging.101414
.
Belsky DW , Caspi A , Arseneault L ,et al. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm[J]. Elife, 2020,9:e54870. DOI:
10.7554/eLife.54870
.
Sayed N , Huang YX , Nguyen K ,et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging[J]. Nat Aging, 2021,1(7):598-615. DOI:
10.1038/s43587-021-00082-y
.
Fleischer JG , Schulte R , Tsai HH ,et al. Predicting age from the transcriptome of human dermal fibroblasts[J]. Genome Biol, 2018,19(1):221. DOI:
10.1186/s13059-018-1599-6
.
Argentieri MA , Xiao SH , Bennett D ,et al. Proteomic aging clock predicts mortality and risk of common age-related diseases in diverse populations[J]. medRxiv, 2023. DOI:
10.1101/2023.09.13.23295486
.
Hertel J , Friedrich N , Wittfeld K ,et al. Measuring biological age via metabonomics:the metabolic age score[J]. J Proteome Res, 2016,15(2):400-410. DOI:
10.1021/acs.jproteome.5b00561
.
Deelen J , Kettunen J , Fischer K ,et al. A metabolic profile of all-cause mortality risk identified in an observational study of 44, 168 individuals[J]. Nat Commun, 2019,10(1):3346. DOI:
10.1038/s41467-019-11311-9
.
Pyrkov TV , Avchaciov K , Tarkhov AE ,et al. Longitudinal analysis of blood markers reveals progressive loss of resilience and predicts human lifespan limit[J]. Nat Commun, 2021,12(1):2765. DOI:
10.1038/s41467-021-23014-1
.
Putin E , Mamoshina P , Aliper A ,et al. Deep biomarkers of human aging:application of deep neural networks to biomarker development[J]. Aging (Albany NY), 2016,8(5):1021-1033. DOI:
10.18632/aging.100968
.
Klemera P , Doubal S . A new approach to the concept and computation of biological age[J]. Mech Ageing Dev, 2006,127(3):240-248. DOI:
10.1016/j.mad.2005.10.004
.
Cao LM , Chen ST , Wang T . Progress in research of quantification of biological age[J]. Chin J Epidemiol, 2023,44(3):516-520. DOI:
10.3760/cma.j.cn112338-20220814-00709
.
Goto CitationGoogle ScholarBaidu ScholarWanfang Data
[28]
Levine ME . Modeling the rateof senescence:can estimated biological age predict mortality more accurately than chronological age?[J]. J Gerontol A Biol Sci Med Sci, 2013,68(6):667-674. DOI:
10.1093/gerona/gls233
.
Chen L , Zhang YQ , Yu CQ ,et al. Modeling biological age using blood biomarkers and physical measurements in Chinese adults[J]. EBioMedicine, 2023,89:104458. DOI:
10.1016/j.ebiom.2023.104458
.
Li Q , Wang SR , Milot E ,et al. Homeostatic dysregulation proceeds in parallel in multiple physiological systems[J]. Aging Cell, 2015,14(6):1103-1112. DOI:
10.1111/acel.12402
.
Mamoshina P , Kochetov K , Putin E ,et al. Population specific biomarkers of human aging:a big data study using south Korean, Canadian, and eastern European patient populations[J]. J Gerontol A Biol Sci Med Sci, 2018,73(11):1482-1490. DOI:
10.1093/gerona/gly005
.
Liu WS , You J , Ge YJ ,et al. Association of biological age with health outcomes and its modifiable factors[J]. Aging Cell, 2023,22(12):e13995. DOI:
10.1111/acel.13995
.
Galkin F , Mamoshina P , Aliper A ,et al. Biohorology and biomarkers of aging:current state-of-the-art, challenges and opportunities[J]. Ageing Res Rev, 2020,60:101050. DOI:
10.1016/j.arr.2020.101050
.
Mak JKL , McMurran CE , Hägg S . Clinical biomarker-based biological ageing and future risk of neurological disorders in the UK biobank[J]. J Neurol Neurosurg Psychiatry, 2023,95(5):481-484. DOI:
10.1136/jnnp-2023-331917
.
Mak JKL , McMurran CE , Kuja-Halkola R ,et al. Clinical biomarker-based biological aging and risk of cancer in the UK biobank[J]. Br J Cancer, 2023,129(1):94-103. DOI:
10.1038/s41416-023-02288-w
.
Luo S , Wong ICK , Chui CSL ,et al. Effects of putative metformin targets on phenotypic ageand leukocyte telomere length:a mendelian randomisation study using data from the UK biobank[J]. Lancet Healthy Longev, 2023,4(7):e337-344. DOI:
10.1016/S2666-7568(23)00085-5
.
Khramtsova EA , Davis LK , Stranger BE . The role of sex in the genomics of human complex traits[J]. Nat Rev Genet, 2019,20(3):173-190. DOI:
10.1038/s41576-018-0083-1
.
Lin Q , Weidner CI , Costa IG ,et al. DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy[J]. Aging (Albany NY), 2016,8(2):394-401. DOI:
10.18632/aging.100908
.
Horvath S , Oshima J , Martin GM ,et al. Epigenetic clock for skin and blood cells applied to hutchinson gilford progeria syndrome and ex vivo studies[J]. Aging (Albany NY), 2018,10(7):1758-1775. DOI:
10.18632/aging.101508
.
Zheng ZK , Li JM , Liu TZ ,et al. DNA methylation clocks for estimating biological age in Chinese cohorts[J/OL]. [ 2024-04-24]. Protein Cell, 2024:pwae011. https://doi.org/10.1093/procel/pwae011.
Yang Z , Wong A , Kuh D ,et al. Correlation of an epigenetic mitotic clock with cancer risk[J]. Genome Biol, 2016,17(1):205. DOI:
10.1186/s13059-016-1064-3
.
Hillary RF , Stevenson AJ , McCartney DL ,et al. Epigenetic measures of ageing predict the prevalence and incidence of leading causes of death and disease burden[J]. Clin Epigenetics, 2020,12(1):115. DOI:
10.1186/s13148-020-00905-6
.
Liu ZY , Chen X , Gill TM ,et al. Associations of genetics, behaviors, and life course circumstances with a novel aging and healthspan measure:evidence from the health and retirement study[J]. PLoS Med, 2019,16(6):e1002827. DOI:
10.1371/journal.pmed.1002827
.
Chen QW , Dwaraka VB , Carreras-Gallo N ,et al. OMICmAge:an integrative multi-omics approach to quantify biological age with electronic medical records[J]. bioRxiv, 2023. DOI:
10.1101/2023.10.16.562114.(published
online ahead of print)
Belsky DW , Caspi A , Houts R ,et al. Quantification of biological aging in young adults[J]. Proc Natl Acad Sci U S A, 2015,112(30):E4104-4110. DOI:
10.1073/pnas.1506264112
.
Belsky DW , Caspi A , Corcoran DL ,et al. DunedinPACE, a DNA methylation biomarker of the pace of aging[J]. Elife, 2022,11:e73420. DOI:
10.7554/eLife.73420
.
Elliott ML , Caspi A , Houts RM ,et al. Disparities in the pace of biological aging among midlife adults of the same chronological age have implications for future frailty risk and policy[J]. Nat Aging, 2021,1(3):295-308. DOI:
10.1038/s43587-021-00044-4
.
Sugden K , Caspi A , Elliott ML ,et al. Association of pace of aging measured by blood-based DNA methylation with age-related cognitive impairment and dementia[J]. Neurology, 2022,99(13):e1402-1413. DOI:
10.1212/WNL.0000000000200898
.
Dugué PA , Bassett JK , Joo JE ,et al. DNA methylation-based biological aging and cancer risk and survival:pooled analysis of seven prospective studies[J]. Int J Cancer, 2018,142(8):1611-1619. DOI:
10.1002/ijc.31189
.
Yu M , Hazelton WD , Luebeck GE ,et al. Epigenetic aging:more than just a clock when it comes to cancer[J]. Cancer Res, 2020,80(3):367-374. DOI:
10.1158/0008-5472.CAN-19-0924
.
Morales Berstein F , McCartney DL , Lu AT ,et al. Assessing the causal role of epigenetic clocks in the development of multiple cancers:a Mendelian randomization study[J]. Elife, 2022,11:e75374. DOI:
10.7554/eLife.75374
.
Yang JH , Hayano M , Griffin PT ,et al. Loss of epigenetic information as a cause of mammalian aging[J]. Cell, 2023,186(2):305-326.e27. DOI:
10.1016/j.cell.2022.12.027
.
Lu AT , Fei Z , Haghani A ,et al. Universal DNA methylation age across mammalian tissues[J]. Nat Aging, 2023,3(9):1144-1166. DOI:
10.1038/s43587-023-00462-6
.
Poganik JR , Zhang BH , Baht GS ,et al. Biological age is increased by stress and restored upon recovery[J]. Cell Metab, 2023,35(5):807-820.e5. DOI:
10.1016/j.cmet.2023.03.015
.
Sidik S . Pregnancy advances your 'biological' age - but giving birth turns it back[J]. Nature, 2024,628(8006):18-19. DOI:
10.1038/d41586-024-00843-w
.
Kankaanpää A , Tolvanen A , Heikkinen A ,et al. The role of adolescent lifestyle habits in biological aging:a prospective twin study[J]. Elife, 2022,11:e80729. DOI:
10.7554/eLife.80729
.
Galkin F , Kovalchuk O , Koldasbayeva D ,et al. Stress, diet, exercise:common environmental factors and their impact on epigenetic age[J]. Ageing Res Rev, 2023,88:101956. DOI:
10.1016/j.arr.2023.101956
.
Fiorito G , Caini S , Palli D ,et al. DNA methylation-based biomarkers of aging were slowed down in a two-year diet and physical activity intervention trial:the DAMA study[J]. Aging Cell, 2021,20(10):e13439. DOI:
10.1111/acel.13439
.
Föhr T , Waller K , Viljanen A ,et al. Mortality associations with DNA methylation-based biological aging and physical functioning measures across a 20-year follow-up period[J]. J Gerontol A Biol Sci Med Sci, 2023,78(8):1489-1496. DOI:
10.1093/gerona/glad026
.
Waziry R , Ryan CP , Corcoran DL ,et al. Effect of long-term caloric restriction on DNA methylation measures of biological aging in healthy adults from the CALERIE trial[J]. Nat Aging, 2023,3(3):248-257. DOI:
10.1038/s43587-022-00357-y
.
Matsuyama M , WuWong DJ , Horvath S ,et al. Epigenetic clock analysis of human fibroblastsin vitro:effects of hypoxia, donor age, and expression of hTERT and SV40 largeT[J]. Aging (Albany NY), 2019,11(10):3012-3022. DOI:
10.18632/aging.101955
.
Galow AM , Peleg S . How to slow down the ticking clock:age-associated epigenetic alterations and related interventions to extend life span[J]. Cells, 2022,11(3):468. DOI:
10.3390/cells11030468
.
Li M , Bao LT , Zhu P ,et al. Effect of metformin on the epigenetic age of peripheral blood in patients with diabetes mellitus[J]. Front Genet, 2022,13:955835. DOI:
10.3389/fgene.2022.955835
.
Nwanaji-Enwerem JC , Chung FFL , van der Laan L ,et al. An epigenetic aging analysis of randomized metformin and weight loss interventions in overweight postmenopausal breast cancer survivors[J]. Clin Epigenetics, 2021,13(1):224. DOI:
10.1186/s13148-021-01218-y
.
Peters MJ , Joehanes R , Pilling LC ,et al. The transcriptional landscape of age in human peripheral blood[J]. Nat Commun, 2015,6:8570. DOI:
10.1038/ncomms9570
.
Mamoshina P , Volosnikova M , Ozerov IV ,et al. Machine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identification[J]. Front Genet, 2018,9:242. DOI:
10.3389/fgene.2018.00242
.
Shokhirev MN , Johnson AA . Modeling the human aging transcriptome across tissues, health status, and sex[J]. Aging Cell, 2021,20(1):e13280. DOI:
10.1111/acel.13280
.
Baird GS , Nelson SK , Keeney TR ,et al. Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array[J]. Am J Pathol, 2012,180(2):446-456. DOI:
10.1016/j.ajpath.2011.10.024
.
di Narzo AF , Telesco SE , Brodmerkel C ,et al. High-throughput characterization of blood serum proteomics of IBD patients with respect to aging and genetic factors[J]. PLoS Genet, 2017,13(1):e1006565. DOI:
10.1371/journal.pgen.1006565
.
Tanaka T , Biancotto A , Moaddel R ,et al. Plasma proteomic signature of age in healthy humans[J]. Aging Cell, 2018,17(5):e12799. DOI:
10.1111/acel.12799
.
Lehallier B , Gate D , Schaum N ,et al. Undulating changes in human plasma proteome profiles across the lifespan[J]. Nat Med, 2019,25(12):1843-1850. DOI:
10.1038/s41591-019-0673-2
.
Tanaka T , Basisty N , Fantoni G ,et al. Plasma proteomic biomarker signature of age predicts health and life span[J]. Elife, 2020,9:e61073. DOI:
10.7554/eLife.61073
.
Schafer MJ , Zhang X , Kumar A ,et al. The senescence-associated secretome as an indicator of age and medical risk[J]. JCI Insight, 2020,5(12):e133668. DOI:
10.1172/jci.insight.133668
.
Johnson AA , Shokhirev MN , Wyss-Coray T ,et al. Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age[J]. Ageing Res Rev, 2020,60:101070. DOI:
10.1016/j.arr.2020.101070
.
Lehallier B , Shokhirev MN , Wyss-Coray T ,et al. Data mining of human plasma proteins generates a multitude of highly predictive aging clocks that reflect different aspects of aging[J]. Aging Cell, 2020,19(11):e13256. DOI:
10.1111/acel.13256
.
Oh HSH , Rutledge J , Nachun D ,et al. Organ aging signatures in the plasma proteome track health and disease[J]. Nature, 2023,624(7990):164-172. DOI:
10.1038/s41586-023-06802-1
.
Menni C , Kastenmüller G , Petersen AK ,et al. Metabolomic markers reveal novel pathways of ageing and early development in human populations[J]. Int J Epidemiol, 2013,42(4):1111-1119. DOI:
10.1093/ije/dyt094
.
Rist MJ , Roth A , Frommherz L ,et al. Metabolite patterns predicting sex and age in participants of the Karlsruhe metabolomics and nutrition (KarMeN) study[J]. PLoS One, 2017,12(8):e0183228. DOI:
10.1371/journal.pone.0183228
.
López-Otín C , Blasco MA , Partridge L ,et al. Hallmarks of aging:an expanding universe[J]. Cell, 2023,186(2):243-278. DOI:
10.1016/j.cell.2022.11.001
.
van den Akker EB , Trompet S , Barkey Wolf JJH ,et al. Metabolic age based on the BBMRI-NL1H-NMR metabolomics repository as biomarker of age-related disease[J]. Circ Genom Precis Med, 2020,13(5):541-547. DOI:
10.1161/CIRCGEN.119.002610
.
Lau CHE , Manou M , Markozannes G ,et al. NMR metabolomic modeling of ageand lifespan:a multicohort analysis[J/OL].[ 2024-04-24]. Aging Cell, 2024:e14164. https://doi.org/10.1111/acel.14164.
Robinson O , Chadeau Hyam M , Karaman I ,et al. Determinants of accelerated metabolomic and epigenetic aging in a UK cohort[J]. Aging Cell, 2020,19(6):e13149. DOI:
10.1111/acel.13149
.
Zhang L , Mo SB , Zhu XR ,et al. Global metabolomics revealed deviations from the metabolic aging clock in colorectal cancer patients[J]. Theranostics, 2024,14(4):1602-1614. DOI:
10.7150/thno.87303
.
Wang T , Maden SK , Luebeck GE ,et al. Dysfunctional epigenetic aging of the normal colon and colorectal cancer risk[J]. Clin Epigenetics, 2020,12(1):5. DOI:
10.1186/s13148-019-0801-3
.
Nie C , Li Y , Li R ,et al. Distinct biological ages of organs and systems identified from a multi-omics study[J]. Cell Rep, 2022,38(10):110459. DOI:
10.1016/j.celrep.2022.110459
.
Li JM , Xiong MZ , Fu XH ,et al. Determining a multimodal aging clock in a cohort of Chinese women[J]. Med, 2023,4(11):825-848.e13. DOI:
10.1016/j.medj.2023.06.010
.
Griffin PT , Kane AE , Trapp A ,et al. TIME-seq reduces time and cost of DNA methylation measurement for epigenetic clock construction[J]. Nat Aging, 2024,4(2):261-274. DOI:
10.1038/s43587-023-00555-2
.
Moqri M , Herzog C , Poganik JR ,et al. Biomarkers of aging for the identification and evaluation of longevity interventions[J]. Cell, 2023,186(18):3758-3775. DOI:
10.1016/j.cell.2023.08.003
.
Lee J , Burkett BJ , Min HK ,et al. Deep learning-based brain age prediction in normal aging and dementia[J]. Nat Aging, 2022,2(5):412-424. DOI:
10.1038/s43587-022-00219-7
.
Leonardsen EH , Peng H , Kaufmann T ,et al. Deep neural networks learn general and clinically relevant representations of the ageing brain[J]. Neuroimage, 2022,256:119210. DOI:
10.1016/j.neuroimage.2022.119210
.
Georgievskaya A , Tlyachev T , Kiselev K ,et al. Predicting human chronological age via AI analysis of dorsal hand versus facial images:a study in a cohort of Indian females[J]. Exp Dermatol, 2024,33(3):e15045. DOI:
10.1111/exd.15045
.
Han SF , Guo YL , Zhou XY ,et al. A Chinese face dataset with dynamic expressions and diverse ages synthesized by deep learning[J]. Sci Data, 2023,10(1):878. DOI:
10.1038/s41597-023-02701-2
.
Zhu ZW, Cheng SS, Cheng X, et al. A research of omics-based biological aging clocks and their applications[J]. Chin J Epidemiol, 2024, 45(9):1291-1301. DOI: 10.3760/cma.j.cn112338-20240424-00215.