临床研究
ENGLISH ABSTRACT
51个视网膜色素变性家系遗传学特征分析
周玲玲
周梦涵
沈吟
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20230221-00058
Genetic characteristics of 51 retinitis pigmentosa families
Zhou Lingling
Zhou Menghan
Shen Yin
Authors Info & Affiliations
Zhou Lingling
Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
Zhou Menghan
Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
Shen Yin
Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
·
DOI: 10.3760/cma.j.cn115989-20230221-00058
215
63
0
0
0
0
PDF下载
APP内阅读
摘要

目的分析视网膜色素变性(RP)家系的致病基因。

方法采用家系调查研究方法,收集2019年6月至2022年12月就诊于武汉大学人民医院的中国51个RP家系的临床资料,包括患者病史、家族史及眼科检查临床资料,眼科检查临床资料包括最佳矫正视力、裂隙灯显微镜、彩色眼底照相、眼底自发荧光、黄斑区光学相干断层扫描、视野及视网膜电图。采集患者及家属外周血,提取DNA,进行全外显子测序,对发现的变异位点进行生物信息学分析、Sanger验证。采用SIFT、Polyphen等在线软件预测错义变异致病性,采用Mutation Taster在线软件评估错义变异位点的保守性,采用varSEAK、spliceAI对剪切变异进行预测,并用Clustalw软件对新发现的变异位点进行多物种蛋白质氨基酸序列比对。

结果51个家系中,2例先证者伴有听力障碍,被诊断为Usher综合征,2例先证者眼底成像除典型RP特征外还出现黄白色结晶样物质沉着,其余家系先证者眼底成像表现为典型RP。51个家系中,29个家系在15个致病基因中检测出38个单核苷酸变异(SNVs)和3个拷贝数变异,包括 PRPF6PRPF31RHOCYP4V2USH2AEYSMERTKPCDH15ABCA4BBS2PROM1SPATA7RPE65RPGROFD1基因,38个SNVs中有6个未曾报道过的新变异,分别是 USH2A基因c.12523T>C(p.Trp4175Arg)、c.1723T>C(p.Cys575Arg)、c.1875C>G(p.Phe625Leu), CYP4V2基因c.1441C>T(p.Leu481Phe), MERTK基因c.2487-8A>G和 PCDH15基因c.5183del(p.Arg1728LysfsTer116)。SIFT、Polyphen预测软件对 USH2A基因p.Trp4175Arg、p.Cys575Arg、p.Phe625Leu和 CYP4V2基因p.Leu481Phe这4个错义变异位点造成的氨基酸改变预测均为致病或有害,保守性分析显示其在多个物种中保守。spliceAI、varSEAK预测软件均提示, MERTK基因c.2487-8A>G可能会导致剪切异常,影响蛋白质功能。 PCDH15基因c.5183del(p.Arg1728LysfsTer116)为移码变异,会改变下游氨基酸序列并使翻译提前终止。 CYP4V2USH2ARPGR基因为RP患者中变异频率较高的基因,占所有检出致病基因家系的50%以上,其中 CYP4V2基因致病的先证者起病较晚,但视功能下降和视网膜退变更严重。

结论本研究发现了6个未报道过的变异可能是RP的致病变异; CYP4V2USH2ARPGR基因是中国RP患者主要的致病基因; CYP4V2基因致病的患者起病较晚,但疾病进展较快。

视网膜色素变性;全外显子测序;致病基因;变异
ABSTRACT

ObjectiveTo analyze the disease-causing genes of families affected by retinitis pigmentosa (RP).

MethodsA pedigree investigation study was performed.The clinical data of 51 Chinese families with RP treated at the Renmin Hospital of Wuhan University from June 2019 to December 2022 were collected, including patient history, family history and clinical data of ophthalmic examination.Ophthalmic examination including best corrected visual acuity, slit lamp microscopy, color fundus photography, fundus autofluorescence, macular optical coherence tomography, visual field and electroretinogram.Peripheral blood samples from patients and their family members were collected for DNA extraction and whole exome sequencing.The mutation sites found were analyzed by bioinformatics and verified by Sanger sequencing.The pathogenicity of the missense mutations was predicted using SIFT, Polyphen and other online software.Conservation of the missense mutation site was evaluated using Mutation Taster.The shear mutation was predicted using varSEAK and spliceAI.The amino acid sequences of the newly discovered mutation sites were compared using Clustalw software.This study adhered to the Declaration of Helsinki.The study protocol was approved by the Ethics Committee of Renmin Hospital of Wuhan University (No.WDRY2019-K032).

ResultsAmong the 51 families, two proband patients had hearing impairment and were diagnosed as Usher syndrome.In addition to typical RP features, the two proband patients also showed yellow-white crystalline substance deposits in fundus imaging, while the other proband patients showed typical RP.A total of 38 single nucleotide variants (SNVs) and 3 copy number variants were detected in 15 pathogenic genes in 29 of 51 families, including PRPF6, PRPF31, RHO, CYP4V2, USH2A, EYS, MERTK, PCDH15, ABCA4, BBS2, PROM1, SPATA7, RPE65, RPGR and OFD1 genes.There were 6 of the 38 SNVs that were novel variants that had not been reported, which were USH2A gene c.12523T>C(p.Trp4175Arg), c.1723T>C(p.Cys575Arg), c.1875C>G(p.Phe625Leu), CYP4V2 gene c.1441C>T(p.Leu481Phe), MERTK gene c.2487-8A>G and PCDH15 gene c. 5183del(p.Arg1728LysfsTer116).SIFT and Polyphen prediction software predicted that amino acid changes caused by the 4 missense variants, USH2A gene p. Trp4175Arg, p.Cys575Arg, p.Phe625Leu and CYP4V2 gene p. Leu481Phe, are all pathogenic or harmful.Conservation analysis showed that they are conserved in multiple species.The prediction software spliceAI and varSEAK suggested that MERTK gene c.2487-8A>G may lead to abnormal shear and affect protein function. PCDH15 gene c. 5183del(p.Arg1728LysfsTer116) is a frameshift variant that alters the downstream amino acid sequence and terminates translation early. CYP4V2, USH2A, and RPGR were frequently mutated genes in RP patients, accounting for more than 50% of the families with pathogenic genes detected.The proband with CYP4V2 variants had late onset, but severe visual impairment and retinal degeneration.

ConclusionsSix previously unreported variants may be novel pathogenic variants of RP. CYP4V2, USH2A, and RPGR may be the most common pathogenic genes in Chinese RP patients.Patients with CYP4V2 variants have late onset, but faster disease progression.

Retinitis pigmentosa;Whole exome sequencing;Pathogenic genes;Variants
Shen Yin, Email: nc.defudabe.uhwnehsniy
引用本文

周玲玲,周梦涵,沈吟. 51个视网膜色素变性家系遗传学特征分析[J]. 中华实验眼科杂志,2024,42(10):909-918.

DOI:10.3760/cma.j.cn115989-20230221-00058

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
视网膜色素变性(retinitis pigmentosa,RP)是一种主要以光感受器和色素上皮层退变为特点的视网膜退行性病变,世界范围内发病率约为1/4 000 [ 1 ]。RP的主要特点是从周边视网膜开始发生光感受器细胞凋亡,并逐渐向黄斑中心进展,导致相应的周边部视野逐渐丧失,最终黄斑中心凹光感受器细胞受累,中心视力丧失。眼底主要表现为色素沉着、视网膜血管变细和视盘蜡黄 [ 2 ]。根据是否伴有全身症状,RP又可分为综合征性RP和非综合征性RP,其中综合征性RP主要包括Usher综合征和Bardet-Biedl综合征 [ 3 ]。临床上主要通过临床表现、彩色眼底照相、光学相干断层扫描(optical coherence tomography,OCT)、视网膜电图(electroretinogram,ERG)、视野及眼底血管造影检查来诊断RP,分子诊断也逐渐成为临床诊断的重要组成部分。目前已发现超过90个RP相关致病基因(https://web.sph.uth.edu/RetNet/),这些基因编码的蛋白在光转导级联、视觉循环、RNA剪切、视网膜代谢、纤毛的结构与功能维持等方面发挥重要作用 [ 4 , 5 , 6 ]。本研究通过全外显子测序(whole exome sequencing,WES)明确RP家系的致病基因,分析RP患者的遗传学特征及致病基因频谱,为RP患者的诊断和遗传咨询以及中国RP人群的流行病学研究提供参考依据,并为RP基因治疗的研究方向提供新的思路。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Pagon RA . Retinitis pigmentosa[J]. Surv Ophthalmol 198833(3)∶137177. DOI: 10.1016/0039-6257(88)90085-9 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Verbakel SK van Huet R Boon C et al. Non-syndromic retinitis pigmentosa[J]. Prog Retin Eye Res 201866157186. DOI: 10.1016/j.preteyeres.2018.03.005 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Hartong DT Berson EL Dryja TP . Retinitis pigmentosa[J]. Lancet 2006368(9549)∶17951809. DOI: 10.1016/S0140-6736(06)69740-7 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Guadagni V Novelli E Piano I et al. Pharmacological approaches to retinitis pigmentosa:a laboratory perspective[J]. Prog Retin Eye Res 2015486281. DOI: 10.1016/j.preteyeres.2015.06.005 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Nash BM Wright DC Grigg JR et al. Retinal dystrophies,genomic applications in diagnosis and prospects for therapy[J]. Transl Pediatr 20154(2)∶139163. DOI: 10.3978/j.issn.2224-4336.2015.04.03 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Veleri S Lazar CH Chang B et al. Biology and therapy of inherited retinal degenerative disease:insights from mouse models[J]. Dis Model Mech 20158(2)∶109129. DOI: 10.1242/dmm.017913 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
do Valle ÍF Giampieri E Simonetti G et al. Optimized pipeline of MuTect and GATK tools to improve the detection of somatic single nucleotide polymorphisms in whole-exome sequencing data[J/OL]. BMC Bioinformatics 201617(Suppl 12)∶341[2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/28185561/. DOI: 10.1186/s12859-016-1190-7 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Wang K Li M Hakonarson H ANNOVAR:functional annotation of genetic variants from high-throughput sequencing data[J/OL]. Nucleic Acids Res 201038(16)∶e164[2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/20601685/. DOI: 10.1093/nar/gkq603 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Richards S Aziz N Bale S et al. Standards and guidelines for the interpretation of sequence variants:a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med 201517(5)∶405424. DOI: 10.1038/gim.2015.30 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Haim M Epidemiology of retinitis pigmentosa in Denmark[J]. Acta Ophthalmol Scand Suppl 2002,(233)∶134. DOI: 10.1046/j.1395-3907.2002.00001.x .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Xu L Hu L Ma K et al. Prevalence of retinitis pigmentosa in urban and rural adult Chinese:the Beijing Eye Study[J]. Eur J Ophthalmol 200616(6)∶865866. DOI: 10.1177/112067210601600614 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Buch H Vinding T La Cour M et al. Prevalence and causes of visual impairment and blindness among 9980 Scandinavian adults:the Copenhagen City Eye Study[J]. Ophthalmology 2004111(1)∶5361. DOI: 10.1016/j.ophtha.2003.05.010 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Jin B Li J Yang Q et al. Genetic characteristics of suspected retinitis pigmentosa in a cohort of Chinese patients[J/OL]. Gene 2023853147087[2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/36464167/. DOI: 10.1016/j.gene.2022.147087 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Huang L Zhang Q Huang X et al. Mutation screening in genes known to be responsible for retinitis pigmentosa in 98 small Han Chinese families[J/OL]. Sci Rep 20177(1)∶1948[2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/28512305/. DOI: 10.1038/s41598-017-00963-6 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Gao FJ Li JK Chen H et al. Genetic and clinical findings in a large cohort of Chinese patients with suspected retinitis pigmentosa[J]. Ophthalmology 2019126(11)∶15491556. DOI: 10.1016/j.ophtha.2019.04.038 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Shen C You B Chen YN et al. Whole-exome sequencing identified genes known to be responsible for retinitis pigmentosa in 28 Chinese families[J]. Mol Vis 20222896113.
返回引文位置Google Scholar
百度学术
万方数据
[17]
Meng XH He Y Zhao TT et al. Novel mutations in CYP4V2 in Bietti corneoretinal crystalline dystrophy:next-generation sequencing technology and genotype-phenotype correlations [J]. Mol Vis 201925654662.
返回引文位置Google Scholar
百度学术
万方数据
[18]
杨极韦春玲张娟 结晶样视网膜色素变性中与 CYP4V2 基因相关的致病突变 [J]. 国际眼科杂志 202121(6)∶11251129. DOI: 10.3980/j.issn.1672-5123.2021.6.37 .
返回引文位置Google Scholar
百度学术
万方数据
Yang J Wei CL Zhang J et al. Identify pathogenic mutations of CYP4V2 gene in Bietti crystalline corneoretinal dystrophy [J]. Int Eye Sci 202121(6)∶11251129. DOI: 10.3980/j.issn.1672-5123.2021.6.37 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[19]
Nakano M Kelly EJ Wiek C et al. CYP4V2 in Bietti ' s crystalline dystrophy:ocular localization,metabolism of ω-3-polyunsaturated fatty acids,and functional deficit of the p.H331P variant [J]. Mol Pharmacol 201282(4)∶679686. DOI: 10.1124/mol.112.080085 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Yin X Yang L Chen N et al. Identification of CYP4V2 mutation in 36 Chinese families with Bietti crystalline corneoretinal dystrophy [J]. Exp Eye Res 2016146154162. DOI: 10.1016/j.exer.2016.03.007 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Meng XH Guo H Xu HW et al. Identification of novel CYP4V2 gene mutations in 92 Chinese families with Bietti ' s crystalline corneoretinal dystrophy [J]. Mol Vis 20142018061814.
返回引文位置Google Scholar
百度学术
万方数据
[22]
Zhu T Chen DF Wang L et al. USH2A variants in Chinese patients with Usher syndrome type Ⅱ and non-syndromic retinitis pigmentosa [J]. Br J Ophthalmol 2021105(5)∶694703. DOI: 10.1136/bjophthalmol-2019-315786 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Bonnet C Grati M Marlin S et al. Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis[J/OL]. Orphanet J Rare Dis 2011621[2024-05-16]. https://pubmed.ncbi.nlm .nih.gov/21569298/ . DOI: 10.1186/1750-1172-6-21 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Lenarduzzi S Vozzi D Morgan A et al. Usher syndrome:an effective sequencing approach to establish a genetic and clinical diagnosis[J]. Hear Res 20153201823. DOI: 10.1016/j.heares.2014.12.006 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Tee JJ Smith AJ Hardcastle AJ et al. RPGR-associated retinopathy:clinical features,molecular genetics,animal models and therapeutic options[J]. Br J Ophthalmol 2016100(8)∶10221027. DOI: 10.1136/bjophthalmol-2015-307698 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Talib M van Schooneveld MJ Thiadens AA et al. Clinical and genetic characteristics of male patients with RPGR -associated retinal dystrophies:a long-term follow-up study [J]. Retina 201939(6)∶11861199. DOI: 10.1097/IAE.0000000000002125 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Cehajic-Kapetanovic J Xue K Martinez-Fernandez de la Camara C et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR[J]. Nat Med 202026(3)∶354359. DOI: 10.1038/s41591-020-0763-1 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Salvetti AP Nanda A MacLaren RE . RPGR -related X-linked retinitis pigmentosa carriers with a severe " male pattern " [J]. Ophthalmologica 2021244(1)∶6067. DOI: 10.1159/000503687 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Meindl A Dry K Herrmann K et al. A gene ( RPGR ) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3) [J]. Nat Genet 199613(1)∶3542. DOI: 10.1038/ng0596-35 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Vervoort R Lennon A Bird AC et al. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa [J]. Nat Genet 200025(4)∶462466. DOI: 10.1038/78182 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Shu X McDowall E Brown AF et al. The human retinitis pigmentosa GTPase regulator gene variant database[J]. Hum Mutat 200829(5)∶605608. DOI: 10.1002/humu.20733 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Raghupathy RK Gautier P Soares DC et al. Evolutionary characterization of the retinitis pigmentosa GTPase regulator gene[J]. In vest Ophthalmol Vis Sci 201556(11)∶62556264. DOI: 10.1167/iovs.15-17726 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Sun T Xu K Ren Y et al. Comprehensive molecular screening in Chinese Usher syndrome patients[J]. Invest Ophthalmol Vis Sci 201859(3)∶12291237. DOI: 10.1167/iovs.17-23312 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Maranhao B Biswas P Gottsch AD et al. Investigating the molecular basis of retinal degeneration in a familial cohort of Pakistani decent by exome sequencing[J/OL]. PLoS One 201510(9)∶e0136561[2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/2 6352687/ . DOI: 10.1371/journal.pone.0136561 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Dias MF Joo K Kemp JA et al. Molecular genetics and emerging therapies for retinitis pigmentosa:basic research and clinical perspectives[J]. Prog Retin Eye Res 201863107131. DOI: 10.1016/j.preteyeres.2017.10.004 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Qian X Wang J Wang M et al. Identification of deep-intronic splice mutations in a large cohort of patients with inherited retinal diseases[J/OL]. Front Genet 202112647400[2024-05-17]. https://pubmed.ncbi.nlm.nih.gov/33737949/. DOI: 10.3389/fgene.2021.647400 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Yzer S Hollander AI Lopez I et al. Ocular and extra-ocular features of patients with Leber congenital amaurosis and mutations in CEP290[J]. Mol Vis 201218412425.
返回引文位置Google Scholar
百度学术
万方数据
[38]
Dulla K Aguila M Lane A et al. Splice-modulating oligonucleotide QR-110 restores CEP290 mRNA and function in human c.2991+1655A > G LCA10 models [J]. Mol Ther Nucleic Acids 201812730740. DOI: 10.1016/j.omtn.2018.07.010 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Fadaie Z Khan M Del Pozo-Valero M et al. Identification of splice defects due to noncanonical splice site or deep-intronic variants in ABCA4 [J]. Hum Mutat 201940(12)∶23652376. DOI: 10.1002/humu.23890 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Weisschuh N Sturm M Baumann B et al. Deep-intronic variants in CNGB3 cause achromatopsia by pseudoexon activation [J]. Hum Mutat 202041(1)∶255264. DOI: 10.1002/humu.23920 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
沈吟,Email: nc.defudabe.uhwnehsniy
B

周玲玲:试验设计、数据统计分析、文章撰写;周梦涵:数据整理;沈吟:研究指导、论文审阅及定稿

C
所有作者均声明不存在利益冲突
D
国家重点研发计划 (2017YFE0103400)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号