临床研究
ENGLISH ABSTRACT
后节小眼畸形-视网膜劈裂-视网膜玻璃膜疣综合征一家系临床表型和基因型分析
谢婷
陈青山
梁佳
方冬
陈璐
张少冲
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20230626-00023
Genetic analysis of a family with posterior segment microphthalmia-retinoschisis and drusen syndrome
Xie Ting
Chen Qingshan
Liang Jia
Fang Dong
Chen Lu
Zhang Shaochong
Authors Info & Affiliations
Xie Ting
School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, China
Chen Qingshan
Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
Liang Jia
Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
Fang Dong
Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
Chen Lu
Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
Zhang Shaochong
Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
·
DOI: 10.3760/cma.j.cn115989-20230626-00023
144
25
0
0
0
0
PDF下载
APP内阅读
摘要

目的分析后节小眼畸形-视网膜劈裂-视网膜玻璃膜疣综合征一家系的临床表型和基因型。

方法采用家系调查研究方法,收集2021年7月于深圳市眼科医院就诊的来自中国惠州地区汉族后节小眼畸形综合征一家系共2代4人的临床资料,对各家系成员进行详细的眼科检查,包括最佳矫正视力、眼压、裂隙灯显微镜、彩色眼底照相、光学相干断层扫描(OCT)、眼前节OCT、荧光素眼底血管造影(FFA)和视野检查。采集该家系成员外周静脉血,进行全外显子组测序和数据分析,应用ACMG指南对新发现的变异位点进行致病性分析。

结果先证者女,14岁,自幼高度远视,视力右眼+9.75 DS-0.75 DC×150°=0.9,左眼+11.75 DS-1.25 DC×30°=0.7。角膜横径分别为12.1和12.2 mm,前房深度分别为2.56和2.92 mm,晶状体厚度分别为3.92和3.94 mm,眼轴长度分别为17.47和17.01 mm。彩色眼底照相显示中周部视网膜弥漫性分布边界不清的黄白色玻璃膜疣样病灶;OCT显示视网膜内核层劈裂,视网膜色素上皮下多个均质土堆状隆起和高反射致密点;FFA显示双眼中周部视网膜弥漫性斑点状透见荧光;视野检查显示双眼视觉灵敏度总体降低。先证者胞弟8岁,体征与其相似。父母近亲结婚,表型正常。全外显子测序结果显示,先证者及其胞弟膜型卷曲相关蛋白( MFRP)基因第5、10外显子上分别有c.1150_1151insC(p.His384Profs*8)和c.498_499insC(p.Asn167Glnfs*34)2个复合杂合变异,先证者父亲携带c.498_499insC,母亲携带c.1150_1151insC。两者均为移码变异,均可导致基因功能的改变。该家系确定的2个变异位点在ESP数据库、千人数据库(Phase3)、ExAC数据库中未见报道,为新发变异,变异与疾病共分离。根据ACMG指南,以上2个位点的变异均被判断为致病变异。根据临床表型和基因型结果,该家系符合常染色体隐性遗传方式,诊断为后节小眼畸形-视网膜劈裂-视网膜玻璃膜疣综合征。

结论 MFRP基因c.1150_1151insC和c.498_499insC为该后节小眼畸形-视网膜劈裂-视网膜玻璃膜疣综合征家系的致病变异位点,该复合杂合变异为首次报道。

小眼畸形;家系;遗传学分析;膜型卷曲相关蛋白基因;后节小眼畸形;视网膜劈裂;玻璃膜疣
ABSTRACT

ObjectiveTo analyze the clinical phenotypes and genotypes of a family with posterior segment microphthalmia-retinoschisis and drusen syndrome.

MethodsA pedigree investigation study was conducted.A family with four members across two generations treated at Shenzhen Eye Hospital in July 2021 was enrolled.Detailed ophthalmic examinations, including best corrected visual acuity (BCVA), intraocular pressure, slit-lamp microscopy, color fundus photography, optical coherence tomography (OCT), anterior segment OCT, fundus fluorescein angiography (FFA), and visual field tests were performed in the four members.Peripheral venous blood samples were collected from members for whole exome sequencing and data analysis.The pathogenicity of novel variant sites was assessed according to the ACMG guidelines.This study adhered to the Declaration of Helsinki.The study protocol was approved by the Ethics Committee of Shenzhen Eye Hospital (No.22KYPJ018).Written informed consent was obtained from each subject or the guardian.

ResultsThe proband is a 14-year-old female with high hyperopia since childhood, BCVA of + 9.75 DS-0.75 DC×150°=0.9 and + 11.75 DS-1.25 DC×30°=0.7, corneal transverse diameters of 12.1 and 12.2 mm, anterior chamber depths of 2.56 and 2.92 mm, lens thicknesses of 3.92 and 3.94 mm, and axial lengths of 17.47 and 17.01 mm in the right and left eyes, respectively.Fundus photography revealed diffuse yellow-white drusen-like lesions with unclear borders in the mid-peripheral retina, while OCT showed retinoschisis in the inner nuclear layer and homogeneous mound-like elevations with hyperreflective dense spots under the retinal pigment epithelium.FFA demonstrated diffuse punctate transilllumination of the mid-peripheral retina in both eyes, and visual field tests revealed a general decrease in visual acuity.The proband's 8-year-old brother exhibited similar signs to the proband.The consanguineously married parents were phenotypically normal.Whole exome sequencing identified compound heterozygous mutations in the membrane frizzled-related protein ( MFRP) gene in the proband and her brother, c.1150_1151insC (p.His384Profs*8) in exon 5 and c. 498_499insC (p.Asn167Glnfs*34) in exon 10.The father carried the c. 498_499insC mutation, while the mother carried the c.1150_1151insC mutation.Both were frameshift mutations predicted to alter gene function.These novel mutations had not been reported in the ESP, 1 000 Genomes (Phase 3), or ExAC databases, indicating they are novel variants.The variants co-segregated with the disease and both were classified as pathogenic according to ACMG guidelines.Based on the clinical and genetic findings, the family was diagnosed with posterior segment microphthalmia-retinoschisis and drusen syndrome, inherited in an autosomal recessive manner.

ConclusionsThe MFRP gene mutations c. 1150_1151insC and c. 498_499insC are the pathogenic variants for the posterior segment microphthalmia-retinoschisis and drusen syndrome in this family, and these compound heterozygous mutations are reported for the first time.

Microphthalmos;Pedigree;Genetic analysis;Membrane frizzled-related protein gene;Posterior microphthalmos;Retinoschisis;Drusen
Zhang Shaochong, Email: mocdef.kabooltuognahzgnohcoahs
引用本文

谢婷,陈青山,梁佳,等. 后节小眼畸形-视网膜劈裂-视网膜玻璃膜疣综合征一家系临床表型和基因型分析[J]. 中华实验眼科杂志,2024,42(10):919-925.

DOI:10.3760/cma.j.cn115989-20230626-00023

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
先天性小眼球普遍意义上是指眼球先天发育异常,眼轴低于平均2个标准差或小于20.5 mm的一类疾病,其特征是高度远视、脉络膜和巩膜增厚、短眼轴,眼前节和后节均异常。真性小眼球和后节小眼畸形是先天性小眼球的2种亚型。对于仅有短眼轴合并小角膜、浅房角等眼前节异常,而无其他严重畸形者,临床称之为真性小眼球(nanophthalmos,NNO);对于眼前节正常,但总眼轴短且眼后节异常者,临床称之为后节小眼畸形 [ 1 ]。据报道,全球每年的新生儿先天性小眼球患病率约为0.66/10 000,而中国先天性小眼球患病率约为0.3/10 000 [ 2 , 3 ]。对中国后节小眼畸形人群的研究对于了解亚洲人群短眼轴的发生和发展具有重要意义。此外,研究与后节小眼畸形有关的眼轴调节机制也可能有助于对近视的研究,因为短眼轴可能与长眼轴有共同机制通路。目前,已经发现膜型卷曲相关蛋白(membrane frizzled related protein, MFRP)、丝氨酸蛋自酶56和常染色体显性遗传基因跨膜蛋白98(transmembrane protein 98, TMEM98)、髓调节因子等多个基因与先天性小眼球的发生有关 [ 4 ]。其中, MFRP多表现为常染色体隐性遗传, MFRP基因位于11q23染色体并编码一种膜型卷曲蛋白,表达于睫状体上皮和视网膜色素上皮(retinal pigment epithelium,RPE)。在人类中,MFRP对成人的视网膜维持和儿童时期的正常眼生长发育均十分重要。当该基因发生变异时,不仅与NNO有关,还可表现为后节小眼畸形、黄斑劈裂、视盘玻璃膜疣等 [ 5 ]。不同位点的 MFRP基因变异导致的临床表型以及疾病的严重程度不同,这为临床医生的鉴别诊断带来极大挑战,因此补充并完善 MFRP基因变异的变异频谱十分重要。本研究对后节小眼畸形-视网膜劈裂-视网膜玻璃膜疣一家系进行了全外显子测序,分析该家系的临床表型及确定致病基因,并总结该家系基因型和表型的关系。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Crespí J Buil JA Bassaganyas F et al. A novel mutation confirms MFRP as the gene causing the syndrome of nanophthalmos-renititis pigmentosa-foveoschisis-optic disk drusen [J]. Am J Oph thalmol 2008146(2)∶323328. DOI: 10.1016/j.ajo.2008.04.029 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Shah SP Taylor AE Sowden JC et al. Anophthalmos,microphthalmos,and typical coloboma in the United Kingdom:a prospective study of incidence and risk[J]. Invest Ophthalmol Vis Sci 201152(1)∶558564. DOI: 10.1167/iovs.10-5263 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Hu Z Yu C Li J et al. A novel locus for congenital simple microphthalmia family mapping to 17p12-q12[J]. Invest Ophthalmol Vis Sci 201152(6)∶34253429. DOI: 10.1167/iovs.10-6747 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Prasov L Guan B Ullah E et al. Novel TMEM98 MFRP PRSS56 variants in a large United States high hyperopia and nanophthalmos cohort [J/OL]. Sci Rep 202010(1)∶19986[2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/33203948/. DOI: 10.1038/s41598-020-76725-8 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Carricondo PC Andrade T Prasov L et al. Nanophthalmos:a review of the clinical spectrum and genetics[J/OL]. J Ophthalmol 201820182735465[2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/29862063/. DOI: 10.1155/2018/2735465 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Awadalla MS Burdon KP Souzeau E et al. Mutation in TMEM98 in a large white kindred with autosomal dominant nanophthalmos linked to 17p12-q12 [J]. JAMA Ophthalmol 2014132(8)∶970977. DOI: 10.1001/jamaophthalmol.2014.946 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Marques JP . MFRP-related nanophthalmos-retinitis pigmentosa-foveoschisis-optic disc drusen syndrome[J/OL]. Ophthalmic Surg Lasers Imaging Retina 202152(2)∶110[2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/33626173/. DOI: 10.3928/23258160-20210201-09 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Sundin OH Leppert GS Silva ED et al. Extreme hyperopia is the result of null mutations in MFRP ,which encodes a frizzled-related protein [J]. Proc Natl Acad Sci U S A 2005102(27)∶95539558. DOI: 10.1073/pnas.0501451102 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Koli S Labelle-Dumais C Zhao Y et al. Identification of MFRP and the secreted serine proteases PRSS56 and ADAMTS19 as part of a molecular network involved in ocular growth regulation[J/OL]. PLoS Genet 202117(3)∶e1009458[2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/33755662/. DOI: 10.1371/journal.pgen.1009458 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Lang E Koller S Atac D et al. Genotype-phenotype spectrum in isolated and syndromic nanophthalmos[J/OL]. Acta Ophthalmol 202199(4)∶e594e607[2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/32996714/. DOI: 10.1111/aos.14615 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Van Raay TJ Vetter ML . Wnt/frizzled signaling during vertebrate retinal development[J]. Dev Neurosci 200426(5-6)∶352358. DOI: 10.1159/000082277 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Almoallem B Arno G De Zaeytijd J et al. The majority of autosomal recessive nanophthalmos and posterior microphthalmia can be attributed to biallelic sequence and structural variants in MFRP and PRSS56 [J/OL]. Sci Rep 202010(1)∶1289[2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/31992737/. DOI: 10.1038/s41598-019-57338-2 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Sundin OH Dharmaraj S Bhutto IA et al. Developmental basis of nanophthalmos: MFRP is required for both prenatal ocular growth and postnatal emmetropization [J]. Ophthalmic Genet 200829(1)∶19. DOI: 10.1080/13816810701651241 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Mameesh M Ganesh A <x>Har</x> <x>ikrishna</x> B et al. Co-inheritance of the membrane frizzled-related protein ocular phenotype and glycogen storage disease type Ib[J]. Ophthalmic Genet 201738(6)∶544548. DOI: 10.1080/13816810.2017.1323340 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Fogerty J Besharse JC . 174delG mutation in mouse MFRP causes photoreceptor degeneration and RPE atrophy[J]. Invest Ophthalmol Vis Sci 201152(10)∶72567266. DOI: 10.1167/iovs.11-8112 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Källén B Tornqvist K The epidemiology of anophthalmia and microphthalmia in Sweden[J]. Eur J Epidemiol 200520(4)∶345350. DOI: 10.1007/s10654-004-6880-1 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Ren X Gao Y Lin Y et al. A novel mutation in the membrane frizzled-related protein gene for posterior microphthalmia,non-pigmented retinitis pigmentosa,optic nerve drusen,and retinoschisis in a consanguineous family[J/OL]. Front Med (Lausanne) 20229835621[2024-05-17]. https://pubmed.ncbi.nlm.nih.gov/35402469/. DOI: 10.3389/fmed.2022.835621 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Ayala-Ramirez R Graue-Wiechers F Robredo V et al. A new autosomal recessive syndrome consisting of posterior microphthalmos,retinitis pigmentosa,foveoschisis,and optic disc drusen is caused by a MFRP gene mutation [J]. Mol Vis 20061214831489.
返回引文位置Google Scholar
百度学术
万方数据
[19]
Zacharias LC Susanna R Jr Sundin O et al. Efficacy of topical dorzolamide therapy for cystoid macular edema in a patient with MFRP-related nanophthalmos-retinitis pigmentosa-foveoschisis-optic disk drusen syndrome[J]. Retin Cases Brief Rep 20159(1)∶6163. DOI: 10.1097/ICB.0000000000000088 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Kautzmann MI Gordon WC Jun B et al. Membrane-type frizzled-related protein regulates lipidome and transcription for photoreceptor function[J]. FASEB J 202034(1)∶912929. DOI: 10.1096/fj.201902359R .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Demircan A Altan C Osmanbasoglu OA et al. Subfoveal choroidal thickness measurements with enhanced depth imaging optical coherence tomography in patients with nanophthalmos[J]. Br J Ophthalmol 201498(3)∶345349. DOI: 10.1136/bjophthalmol-2013-303465 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Wasmann RA Wassink-Ruiter JS Sundin OH et al. Novel membrane frizzled-related protein gene mutation as cause of posterior microphthalmia resulting in high hyperopia with macular folds[J]. Acta Ophthalmol 201492(3)∶276281. DOI: 10.1111/aos.12105 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Neveling K den Hollander AI Cremers FP et al. Identification and analysis of inherited retinal disease genes[J]. Methods Mol Biol 2013935323. DOI: 10.1007/978-1-62703-080-9_1 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Gal A Rau I El Matri L et al. Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56 ,a gene encoding a trypsin-like serine protease [J]. Am J Hum Genet 201188(3)∶382390. DOI: 10.1016/j.ajhg.2011.02.006 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
张少冲:Email: mocdef.kabooltuognahzgnohcoahs
B

谢婷:试验设计、论文起草及修改;陈青山:论文修改;梁佳:遗传学检测结果分析;方冬、陈璐:临床资料收集及分析;张少冲:对文章知识性内容的审阅和智力性内容的修改及定稿

C
所有作者均声明不存在利益冲突
D
国家自然科学基金 (82271102)
深圳市科技计划 (KCXFZ20211020163813019)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号