综述
ENGLISH ABSTRACT
先天性颅神经异常支配性疾病的致病基因及其分子机制研究进展
赵安迪
刘虎 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20210508-00298
Research progress on pathogenic gene and molecular mechanism of congenital cranial dysinnervation disorders
Zhao Andi
Liu Hu
Authors Info & Affiliations
Zhao Andi
Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
Liu Hu
Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
·
DOI: 10.3760/cma.j.cn115989-20210508-00298
131
39
0
0
0
0
PDF下载
APP内阅读
摘要

先天性颅神经异常支配性疾病(CCDDs)是由于特定的颅神经核/颅神经发育异常或缺如,轴突生长导向异常,从而引起原发或继发肌肉异常支配的一组先天性眼球运动障碍。CCDDs呈散发或家族性遗传,目前已报道了数个致病基因,包括先天性眼外肌纤维化的致病基因 KIF21ATUBB3TUBB2BPHOX2A,引起Duane眼球后退综合征的致病基因 CHN1MAFBSALL4HOXA1,引起水平注视麻痹伴进行性脊柱侧弯的基因 ROBO3等。本文基于编码蛋白的亚细胞定位及功能将这些基因分为以下3类:参与微管的生长及组装( KIF21ATUBB3TUBB2B)、调控基因转录( PHOX2A/ ARIXMAFBSALL4HOXA1HOXB1)和影响信号转导( CHN1ROBO3)。本文就CCDDs的分子遗传学及致病机制研究进展进行综述。

先天性颅神经异常支配性疾病;转录因子;信号转导;微管;轴突导向
ABSTRACT

Congenital cranial dysinnervation disorders (CCDDs) refer to a collection of congenital ocular motility disorders resulting from defects or abnormalities in the development of specific cranial nerves/nuclei with axonal guidance that cause primary or secondary dysinnervation.CCDDs may be familial or sporadic.Currently, multiple genes have been identified as pathogenic.For example, variants of KIF21A, TUBB3, TUBB2B and PHOX2A may cause congenital fibrosis of extraocular muscle, variants of CHN1, MAFB, SALL4 and HOXA1 may cause Duane retraction syndrome, and variants of ROBO3 may cause horizontal gaze palsy with progressive scoliosis.Based on the reported subcellular locations and functional classifications of these coded proteins, pathogenic genes have been grouped into three categories: promoting microtubule growth and assembly ( KIF21A, TUBB3, TUBB2B), regulating gene transcription ( PHOX2A/ ARIX, MAFB, SALL4, HOXA1, HOXB1), and affecting signal transduction ( CHN1, ROBO3).This article reviews recent insights into the genetics and molecular mechanisms of CCDDs.

Congenital cranial dysinnervation disorders;Transcription factors;Signal transduction;Microtubules;Axon guidance
Liu Hu, Email: nc.defudabe.umjnuhuil
引用本文

赵安迪,刘虎. 先天性颅神经异常支配性疾病的致病基因及其分子机制研究进展[J]. 中华实验眼科杂志,2024,42(10):938-944.

DOI:10.3760/cma.j.cn115989-20210508-00298

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
先天性颅神经异常支配性疾病(congenital cranial dysinnervation disorders,CCDDs)是由于一条或多条颅神经发育异常或完全缺如而引起的一组先天性、非进行性眼球运动障碍,伴或不伴全身系统异常 [ 1 , 2 ]。由于临床表现多样、病因复杂且异质性高,CCDDs的诊断与治疗面临诸多挑战。近年来,随着分子机制研究和动物模型的建立,对于CCDDs的认识取得了重要进展。多种基因变异可通过影响神经元迁移和神经肌肉连接,从而引发该病。本文就CCDDs的分子遗传学及致病机制研究进展进行综述。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Gutowski NJ Chilton JK . The congenital cranial dysinnervation disorders[J]. Arch Dis Child 2015100(7)∶678681. DOI: 10.1136/archdischild-2014-307035 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Demer JL Clark RA Engle EC . Magnetic resonance imaging evidence for widespread orbital dysinnervation in congenital fibrosis of extraocular muscles due to mutations in KIF21A[J]. Invest Ophthalmol Vis Sci 200546(2)∶530539. DOI: 10.1167/iovs.04-1125 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Price JM Boparai RS Wasserman BN . Congenital fibrosis of the extraocular muscles:review of recent literature[J]. Curr Opin Ophthalmol 201930(5)∶314318. DOI: 10.1097/ICU.0000000000000592 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Cheng L Desai J Miranda CJ et al. Human CFEOM1 mutations attenuate KIF21A autoinhibition and cause oculomotor axon stalling [J]. Neuron 201482(2)∶334349. DOI: 10.1016/j.neuron.2014.02.038 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Wu J Huang L Zhou Y et al. Clinical and genetic characteristics of Chinese patients with congenital fibrosis of the extraocular muscles[J/OL]. Orphanet J Rare Dis 202419(1)∶300[2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/39148141/. DOI: 10.1186/s13023-024-03206-w .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Nakano M Yamada K Fain J et al. Homozygous mutations in ARIX( PHOX2A ) result in congenital fibrosis of the extraocular muscles typ e 2 [J]. Nat Genet 200129(3)∶315320. DOI: 10.1038/ng744 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Whitman MC Barry BJ Robson CD et al. TUBB3 Arg262His causes a recognizable syndrome including CFEOM3,facial palsy,joint contractures,and early-onset peripheral neuropathy [J]. Hum Genet 2021140(12)∶17091731. DOI: 10.1007/s00439-021-02379-9 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Yamada K Chan WM Andrews C et al. Identification of KIF21A mutations as a rare cause of congenital fibrosis of the extraocular muscles type 3 (CFEOM3) [J]. Invest Ophthalmol Vis Sci 200445(7)∶22182223. DOI: 10.1167/iovs.03-1413 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Cederquist GY Luchniak A Tischfield MA et al. An inherited TUBB2B mutation alters a kinesin-binding site and causes polymicrogyria,CFEOM and axon dysinnervation [J]. Hum Mol Genet 201221(26)∶54845499. DOI: 10.1093/hmg/dds393 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Tukel T Uzumcu A Gezer A et al. A new syndrome,congenital extraocular muscle fibrosis with ulnar hand anomalies,maps to chromosome 21qter[J]. J Med Genet 200542(5)∶408415. DOI: 10.1136/jmg.2004.026138 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Zhang R Jia H Chang Q et al. Two novel CHN1 variants identified in Duane retraction syndrome pedigrees disrupt development of ocular motor nerves in zebrafish [J]. J Hum Genet 202469(1)∶3339. DOI: 10.1038/s10038-023-01201-w .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Park JG Tischfield MA Nugent AA et al. Loss of MAFB function in humans and mice causes Duane syndrome,aberrant extraocular muscle innervation,and inner-ear defects[J]. Am J Hum Genet 201698(6)∶12201227. DOI: 10.1016/j.ajhg.2016.03.023 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Günbey C Çavdarlı B Göçmen R et al. Horizontal gaze palsy with progressive scoliosis:further expanding the ROBO3 spectrum[J]. Ann Clin Transl Neurol 202411(8)∶20882099. DOI: 10.1002/acn3.52129 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
López Gutierrez D Luna López I Medina Mata BA et al. Physiopathologic bases of moebius syndrome:combining genetic,vascular,and teratogenic theories[J]. Pediatr Neurol 2024153110. DOI: 10.1016/j.pediatrneurol.2024.01.007 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Vogel M Velleuer E Schmidt-Jiménez LF et al. Homozygous HOXB1 loss-of-function mutation in a large family with hereditary congenital facial paresis [J]. Am J Med Genet A 2016170(7)∶18131819. DOI: 10.1002/ajmg.a.37682 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Tenney AP Di Gioia SA Webb BD et al. Noncoding variants alter GATA2 expression in rhombomere 4 motor neurons and cause dominant hereditary congenital facial paresis[J]. Nat Genet 202355(7)∶11491163. DOI: 10.1038/s41588-023-01424-9 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Khan AO Almutlaq M Oystreck DT et al. Retinal d ysfunction in patients with congenital fibrosis of the extraocular muscles type 2 [J]. Ophthalmic Genet 201637(2)∶130136. DOI: 10.3109/13816810.2014.926942 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Thomas MG Maconachie G Kuht HJ et al. Optic nerve head and retinal abnormalities associated with congenital fibrosis of the extraocular muscles[J/OL]. Int J Mol Sci 202122(5)∶2575[2024-01-10]. https://pubmed.ncbi.nlm.nih.gov/33806565/. DOI: 10.3390/ijms22052575 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Balasubramanian R Chew S MacKinnon SE et al. Expanding the phenotypic spectrum and variability of endocrine abnormalities associate d with TUBB3 E410K syndrome [J/OL]. J Clin Endocrinol Metab 2015100(3)∶E473-477[2024-01-06]. https://pubmed.ncbi.nlm.nih.gov/25559402/. DOI: 10.1210/jc.2014-4107 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Watson JA Pantier R Jayachandran U et al. Structure of SALL4 zinc finger domain reveals link between AT-rich DNA binding and Okihiro syndrome[J/OL]. Life Sci Alliance 20236(3)∶e202201588[2024-01-10]. https://pubmed.ncbi.nlm.nih.gov/36635047/. DOI: 10.26508/lsa.202201588 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Pinero-Pinto E Pérez-Cabezas V Tous-Rivera C et al. Mutation in ROBO3 gene in patients with horizontal gaze palsy with progressive scoliosis syndrome:a systematic review [J/OL]. Int J Environ Res Public Health 202017(12)∶4467[2024-01-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345006/. DOI: 10.3390/ijerph17124467 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Bianchi S van Riel WE Kraatz SH et al. Structural basis for misregulation of kinesin KIF21A autoinhibition by CFEOM1 disease mutations[J/OL]. Sci Rep 2016630668[2024-01-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971492/. DOI: 10.1038/srep30668 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Guo Q Liao S Zhu Z et al. Structural basis for the recognition of kinesin family member 21A (KIF21A) by the ankyrin domains of KANK1 and KANK2 proteins[J]. J Biol Chem 2018293(2)∶557566. DOI: 10.1074/jbc.M117.817494 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Pan W Sun K Tang K et al. Structural insights into ankyrin repeat-mediated recognition of the kinesin motor protein KIF21A by KANK1,a scaffold protein in focal adhesion[J]. J Biol Chem 2018293(6)∶19441956. DOI: 10.1074/jbc.M117.815779 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Weng Z Shang Y Yao D et al. Structural analyses of key features in the KANK1·KIF21A complex yield mechanistic insights into th e cross-talk between microtubules and the cell cortex [J]. J Biol Chem 2018293(1)∶215225. DOI: 10.1074/jbc.M117.816017 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Ali Z Xing C Anwar D et al. A novel de novo KIF21A mutation in a patient with congenital fibrosis of the extraocular muscles and Möbius syndrome [J/OL]. Mol Vis 201420368375.
返回引文位置Google Scholar
百度学术
万方数据
[27]
Kaçar Bayram A Per H Quon J et al. A rare case of congenital fibrosis of extraocular muscle type 1A due to KIF21A mutation with Marcus Gunn jaw-winking phenomenon [J]. Eur J Paediatr Neurol 201519(6)∶743746. DOI: 10.1016/j.ejpn.2015.06.003 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Soliani L Spagnoli C Salerno GG et al. A novel de novo KIF21A variant in a patient with congenital fibrosis of the extraocular muscles with a syndromic CFEOM phenotype [J/OL]. J Neuroophthalmol 202141(1)∶e85e88[2024-01-13]. https://pubmed.ncbi.nlm.nih.gov/32141982/. DOI: 10.1097/WNO.0000000000000921 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Ceylan AC Gursoy H Yildirim N et al. Clinical heterogeneity associated with TUBB3 gene mutation in a Turkish family with congenital fibrosis of the extraocular muscles [J]. Ophthalmic Genet 201738(3)∶288290. DOI: 10.1080/13816810.2016.1193881 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Shao Q Yang T Huang H et al. Uncoupling of UNC5C with polymerized tubb3 in microtubules mediates netrin-1 repulsion[J]. J Neurosci 201737(23)∶56205633. DOI: 10.1523/JNEUROSCI.2617-16.2017 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Tischfield MA Baris HN Wu C et al. Human TUBB3 mutations perturb microtubule dynamics,kinesin interactions,and axon guidance [J]. Cell 2010140(1)∶7487. DOI: 10.1016/j.cell.2009.12.011 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Grant PE Im K Ahtam B et al. Altered white matter organization in the TUBB3 E410K syndrome[J]. Cereb Cortex 201929(8)∶35613576. DOI: 10.1093/cercor/bhy231 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Thomas MG Maconachie G Constantinescu CS et al. Congenital monocular elevation deficiency associated with a novel TUBB3 gene variant [J]. Br J Ophthalmol 2020104(4)∶547550. DOI: 10.1136/bjophthalmol-2019-314293 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Huang H Yang T Shao Q et al. Human TUBB3 mutations disrupt netrin attractive signaling [J]. Neuroscience 2018374155171. DOI: 10.1016/j.neuroscience.2018.01.046 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Shao Q Yang T Huang H et al. Disease-associated mutations in human TUBB3 disturb netrin repulsive signaling[J/OL]. PLoS One 201914(6)∶e0218811[2024-01-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588280/. DOI: 10.1371/journal.pone.0218811 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Roome RB Bourojeni FB Mona B et al. Phox2a defines a developmental origin of the anterolateral system in mice and humans[J/OL]. Cell Rep 202033(8)∶108425[2024-01-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713706/. DOI: 10.1016/j.celrep.2020.108425 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Bell AM Utting C Dickie AC et al. Deep sequencing of Phox2a nuclei reveals five classes of anterolateral system neurons[J/OL]. Proc Natl Acad Sci U S A 2024121(23)∶e2314213121[2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/38805282/. DOI: 10.1073/pnas.2314213121 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Asakawa K Kawakami K Protocadherin-mediated cell repulsion controls the cen tral topography and efferent projections of the abducens nucleus [J]. Cell Rep 201824(6)∶15621572. DOI: 10.1016/j.celrep.2018.07.024 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Sato Y Tsukaguchi H Morita H et al. A mutation in transcription factor MAFB causes focal segmental glomerulosclerosis with Duane retraction syndrome [J]. Kidney Int 201894(2)∶396407. DOI: 10.1016/j.kint.2018.02.025 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Kanai M Jeon H Ojima M et al. Phenotypic analysis of mice carrying human-type MAFB p.Leu239Pro mutation [J]. Biochem Biophys Res Commun 2020523(2)∶452457. DOI: 10.1016/j.bbrc.2019.12.033 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Pappas MP Kawakami H Corcoran D et al. Sall4 regulates posterior trunk mesoderm development by promoting mesodermal gene expression and repressing neural genes in the mesoderm[J/OL]. Development 2024151(5)∶dev202649[2024-09-06]. http://pubmed.ncbi.nlm.nih.gov/38345319/. DOI: 10.1242/dev.202649 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Donovan KA An J Nowak RP et al. Thalidomide promotes degradation of SALL4,a transcription factor implicated in Duane Radial Ray syndrome[J/OL]. Elife 20187e38430[2024-01-15]. https://pubmed.ncbi.nlm.nih.gov/30067223/. DOI: 10.7554/eLife.38430 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Matyskiela ME Couto S Zheng X et al. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate[J]. Nat Chem Biol 201814(10)∶981987. DOI: 10.1038/s41589-018-0129-x .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Razek A Maher H Kasem MA et al. Imaging of congenital cranial dysinnervation disorders:what radiologist wants to know?[J]. Clin Imaging 202171106116. DOI: 10.1016/j.clinimag.2020.10.055 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Murtazina A Borovikov A Kuchina A et al. Expanding the phenotype of hereditary congenital facial paresis type 3[J/OL]. Int J Mol Sci 202325(1)∶129[2024-01-10]. https://pubmed.ncbi.nlm.nih.gov/38203298/. DOI: 10.3390/ijms25010129 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Webb BD Shaaban S Gaspar H et al. HOXB1 founder mutation in humans recapitulates the phenotype of Hoxb1-/-mice [J]. Am J Hum Genet 201291(1)∶171179. DOI: 10.1016/j.ajhg.2012.05.018 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Zhou TC Duan WH Fu XL et al. Identification of a novel CHN1 p.(Phe213Val) variant in a large Han Chinese family with congenital Duane retraction syndrome [J/OL]. Sci Rep 202010(1)∶16225[2024-01-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531002/. DOI: 10.1038/s41598-020-73190-1 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Carretero-Rodriguez L Guðjónsdóttir R Poparic I et al. The Rac-GAP alpha2-chimaerin signals via CRMP2 and stathmins in the development of the ocular motor system[J]. J Neurosci 202141(31)∶66526672. DOI: 10.1523/JNEUROSCI.0983-19.2021 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Nugent AA Park JG Wei Y et al. Mutant α2-chimaerin signals via bidirectional ephrin pathways in Duane retraction syndrome[J]. J Clin Invest 2017127(5)∶16641682. DOI: 10.1172/JCI88502 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Zhuang M Li X Zhu J et al. The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression[J]. Nucleic Acids Res 201947(9)∶47654777. DOI: 10.1093/nar/gkz157 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Shaaban S Ramos-Platt L Gilles FH et al. RYR1 mutations as a cause of ophthalmoplegia,facial weakness,and malignant hyperthermia [J]. JAMA Ophthalmol 2013131(12)∶15321540. DOI: 10.1001/jamaophthalmol.2013.4392 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Khan AO Shaheen R Alkuraya FS . The ECEL1-related strabismus phenotype is consistent with congenital cranial dysinnervation disorder[J]. J AAPOS 201418(4)∶362367. DOI: 10.1016/j.jaapos.2014.03.005 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Abu-Amero KK Kondkar AA Khan AO . A microdeletion in the GRHL2 gene in two unrelated patients with congenital fibrosis of the extra oc ular muscles [J/OL]. BMC Res Notes 201710(1)∶562[2024-01-16]. https://pubmed.ncbi.nlm.nih.gov/29110737/. DOI: 10.1186/s13104-017-2888-y .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Jurgens JA Barry BJ Lemire G et al. Novel variants in TUBA1A cause congenital fibrosis of the extraocular muscles with or without malformations of cortical brain development [J]. Eur J Hum Genet 202129(5)∶816826. DOI: 10.1038/s41431-020-00804-7 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Abu-Amero KK Kondkar AA Odan HA et al. Duane retraction syndrome associated with a small X chromosome deletion[J]. Can J Neurol Sci 201643(3)∶445447. DOI: 10.1017/cjn.2015.358 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
程映赵书涛郭丽. 1个Alagille综合征家系中 JAG1 基因新突变的识别 [J]. 中国当代儿科杂志 201618(11)∶11301135. DOI: 10.7499/j.issn.1008-8830.2016.11.015 .
返回引文位置Google Scholar
百度学术
万方数据
Cheng Y Zhao ST Guo L et al. Identification of a novel JAG1 mutation in a family affected by Alagille syndrome [J]. Chin J Contemp Pediatr 201618(11)∶11301135. DOI: 10.7499/j.issn.1008-8830.2016.11.015 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[57]
Snijders Blok L Hiatt SM Bowling KM et al. De novo mutations in MED13 ,a component of the Mediator complex,are associated with a novel neurodevelopmental disorder [J]. Hum Genet 2018137(5)∶375388. DOI: 10.1007/s00439-018-1887-y .
返回引文位置Google Scholar
百度学术
万方数据
[58]
Abu-Amero KK Kondkar AA Al Otaibi A et al. Partial duplication of chromosome 19 associated with syndromic duane retraction syndrome[J]. Ophthalmic Genet 201536(1)∶1420. DOI: 10.3109/13816810.2013.827218 .
返回引文位置Google Scholar
百度学术
万方数据
[59]
Jedraszak G Braun K Receveur A et al. Growth hormone deficiency and pituitary malformation in a recurrent cat-eye syndrome:a family report[J]. Ann Endocrinol (Paris) 201576(5)∶629634. DOI: 10.1016/j.ando.2015.02.002 .
返回引文位置Google Scholar
百度学术
万方数据
[60]
Tomas-Roca L Tsaalbi-Shtylik A Jansen JG et al. De novo mutations in PLXND1 and REV3L cause Möbius syndrome [J/OL]. Nat Commun 201567199[2024-01-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648025/. DOI: 10.1038/ncomms8199 .
返回引文位置Google Scholar
百度学术
万方数据
[61]
Telegrafi A Webb BD Robbins SM et al. Identification of STAC3 variants in non-Native American families with overlapping features of Carey-Fineman-Ziter syndrome and Moebius syndrome [J]. Am J Med Genet A 2017173(10)∶27632771. DOI: 10.1002/ajmg.a.38375 .
返回引文位置Google Scholar
百度学术
万方数据
[62]
Fazeli W Herkenrath P Stiller B et al. A TUBB6 mutation is associated with autosomal dominant non-progressive congenital facial palsy,bilateral ptosis and velopharyngeal dysfunction [J]. Hum Mol Genet 201726(20)∶40554066. DOI: 10.1093/hmg/ddx296 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
刘虎,Email: nc.defudabe.umjnuhuil
B
所有作者均声明不存在利益冲突
C
国家自然科学基金面上项目 (82273159)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号