首页 中华病理学杂志 2024年53卷11期 实体瘤分子残留病灶检测共识
中华病理学杂志
期刊首页
过刊列表
高级检索
稿件发表
• 共识与指南 •
ENGLISH ABSTRACT
实体瘤分子残留病灶检测共识
中华医学会病理学分会
国家病理质控中心
作者及单位信息
·
DOI: 10.3760/cma.j.cn112151-20240627-00420
Consensus on the molecular residual disease testing in solid tumor
Chinese Society of Pathology
National Pathology Quality Control Center
Liang Zhiyong
Zhou Xiaoyan
Authors Info & Affiliations
Chinese Society of Pathology
National Pathology Quality Control Center
Liang Zhiyong
Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
Zhou Xiaoyan
Department of Pathology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University; Institute of Pathology, Fudan University, Shanghai 200032, China
·
DOI: 10.3760/cma.j.cn112151-20240627-00420
2968
637
0
1
8
1
扫描转手机阅读
下载中华医学期刊APP阅读更流畅 体验更丰富
PDF下载
APP内阅读
摘要
分子残留病灶(molecular residual disease,MRD)也称微小残留病灶或可测量残留病灶。近年来,MRD的概念自血液肿瘤逐步延伸至实体肿瘤,国内外多项临床研究均证实MRD状态与实体瘤复发风险相关,可用于实体瘤患者的预后评估和个体化治疗决策指导。为推动国内实体瘤MRD检测技术的规范化临床应用,本共识对实体瘤MRD的概念,MRD检测的临床应用价值和适用人群,MRD检测技术方法、策略、时机选择,MRD检测规范化及MRD检测报告进行了探讨,以指导MRD检测实践。
引用本文
中华医学会病理学分会,国家病理质控中心. 实体瘤分子残留病灶检测共识[J]. 中华病理学杂志,2024,53(11):1088-1096.
DOI:10.3760/cma.j.cn112151-20240627-00420PERMISSIONS
Request permissions for this article from CCC.
评价本文
*以上评分为匿名评价
本文评分
0分
[累计0个]
向我们报错
版权归中华医学会所有。
未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。
分子残留病灶(molecular residual disease,MRD)也称微小残留病灶(minimal residual disease)或可测量残留病灶(measurable residual disease)。近年来,实体瘤MRD检测技术取得显著进展,国内外多项临床研究表明,MRD状态与实体瘤患者的复发风险具有相关性,可用于实体瘤患者的预后评估和个体化治疗决策指导。中华医学会病理学分会和国家病理质控中心组织分子病理专家与临床专家,共同探讨了实体瘤MRD的概念,MRD检测的临床应用价值和适用人群,检测技术方法、策略及时机选择等问题,并达成共识(注册编号:PREPARE-2023CN626),期望推动国内实体瘤MRD检测技术的规范化临床应用。本共识采用的推荐级别见
表1
。
推荐级别 | 代表意义 |
---|---|
1类 | 基于高级别临床研究证据,专家意见高度一致 |
2A类 | 基于低级别临床研究证据,专家意见高度一致;或基于高级别证据,专家意见基本一致 |
2B类 | 基于低级别临床研究证据,专家意见基本一致 |
3类 | 不论基于何种级别临床证据,专家意见明显分歧 |
展开表格
本共识采用的推荐级别及代表意义
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
已是订阅账户?
登录
参考文献
[1]
Paiva B , van Dongen JJ , Orfao A . New criteria for response assessment: role of minimal residual disease in multiple myeloma[J]. Blood, 2015,125(20):3059-3068. DOI:
10.1182/blood-2014-11-568907
.
[2]
Schuurhuis GJ , Heuser M , Freeman S ,et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party[J]. Blood, 2018,131(12):1275-1291. DOI:
10.1182/blood-2017-09-801498
.
[3]
Berry DA , Zhou S , Higley H ,et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a Meta-analysis[J]. JAMA Oncol, 2017,3(7):e170580. DOI:
10.1001/jamaoncol.2017.0580
.
[4]
Kumar S , Paiva B , Anderson KC ,et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma[J]. Lancet Oncol, 2016,17(8):e328-e346. DOI:
10.1016/S1470-2045(16)30206-6
.
[5]
Tie J , Wang Y , Tomasetti C ,et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage Ⅱ colon cancer[J]. Sci Transl Med, 2016,8(346):346ra92. DOI:
10.1126/scitranslmed.aaf6219
.
[6]
Reinert T , Henriksen TV , Christensen E ,et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to Ⅲ colorectal cancer[J]. JAMA Oncol, 2019,5(8):1124-1131. DOI:
10.1001/jamaoncol.2019.0528
.
[7]
Kotani D , Oki E , Nakamura Y ,et al. Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer[J]. Nat Med, 2023,29(1):127-134. DOI:
10.1038/s41591-022-02115-4
.
[8]
Tie J , Cohen JD , Lahouel K ,et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage Ⅱ colon cancer[J]. N Engl J Med, 2022,386(24):2261-2272. DOI:
10.1056/NEJMoa2200075
.
[9]
Abbosh C , Birkbak NJ , Wilson GA ,et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution[J]. Nature, 2017,545(7655):446-451. DOI:
10.1038/nature22364
.
[10]
Abbosh C , Frankell AM , Harrison T ,et al. Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA[J]. Nature, 2023,616(7957):553-562. DOI:
10.1038/s41586-023-05776-4
.
[11]
Zhang JT , Liu SY , Gao W ,et al. Longitudinal undetectable molecular residual disease defines potentially cured population in localized non-small cell lung cancer[J]. Cancer Discov, 2022,12(7):1690-1701. DOI:
10.1158/2159-8290.CD-21-1486
.
[12]
Chaudhuri AA , Chabon JJ , Lovejoy AF ,et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling[J]. Cancer Discov, 2017,7(12):1394-1403. DOI:
10.1158/2159-8290.CD-17-0716
.
[13]
Chen K , Yang F , Shen H ,et al. Individualized tumor-informed circulating tumor DNA analysis for postoperative monitoring of non-small cell lung cancer[J]. Cancer Cell, 2023,41(10):1749-1762.e6. DOI:
10.1016/j.ccell.2023.08.010
.
[14]
Moding EJ , Liu Y , Nabet BY ,et al. Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small cell lung cancer[J]. Nat Cancer, 2020,1(2):176-183. DOI:
10.1038/s43018-019-0011-0
.
[15]
Pan Y , Zhang JT , Gao X ,et al. Dynamic circulating tumor DNA during chemoradiotherapy predicts clinical outcomes for locally advanced non-small cell lung cancer patients[J]. Cancer Cell, 2023,41(10):1763-1773.e4. DOI:
10.1016/j.ccell.2023.09.007
.
[16]
Dong S , Wang Z , Zhang JT ,et al. Circulating tumor DNA-guided de-Escalation targeted therapy for advanced non-small cell lung cancer: a nonrandomized controlled trial[J]. JAMA Oncol, 2024,10(7):932-940. DOI:
10.1001/jamaoncol.2024.1779
.
[17]
Garcia-Murillas I , Schiavon G , Weigelt B ,et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer[J]. Sci Transl Med, 2015,7(302):302ra133. DOI:
10.1126/scitranslmed.aab0021
.
[18]
Garcia-Murillas I , Chopra N , Comino-Méndez I ,et al. Assessment of molecular relapse detection in early-stage breast cancer[J]. JAMA Oncol, 2019,5(10):1473-1478. DOI:
10.1001/jamaoncol.2019.1838
.
[19]
Radovich M , Jiang G , Hancock BA ,et al. Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary aalysis of the BRE12-158 randomized clinical trial[J]. JAMA Oncol, 2020,6(9):1410-1415. DOI:
10.1001/jamaoncol.2020.2295
.
[20]
Lipsyc-Sharf M , de Bruin EC , Santos K ,et al. Circulating tumor DNA and late recurrence in high-risk hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer[J]. J Clin Oncol, 2022,40(22):2408-2419. DOI:
10.1200/JCO.22.00908
.
[21]
Magbanua M , Swigart LB , Wu HT ,et al. Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival[J]. Ann Oncol, 2021,32(2):229-239. DOI:
10.1016/j.annonc.2020.11.007
.
[22]
Magbanua M , Brown Swigart L , Ahmed Z ,et al. Clinical significance and biology of circulating tumor DNA in high-risk early-stage HER2-negative breast cancer receiving neoadjuvant chemotherapy[J]. Cancer Cell, 2023,41(6):1091-1102.e4. DOI:
10.1016/j.ccell.2023.04.008
.
[23]
Cai Z , Chen G , Zeng Y ,et al.
Comprehensive liquid profiling of circulating tumor DNA and pr
otein biomarkers in long-term follow-up patients with hepatocellular carcinoma
[J]. Clin Cancer Res, 2019,25(17):5284-5294. DOI:
10.1158/1078-0432.CCR-18-3477
.
[24]
Zhu GQ , Liu WR , Tang Z ,et al. Serial circulating tumor DNA to predict early recurrence in patients with hepatocellular carcinoma: a prospective study[J]. Mol Oncol, 2022,16(2):549-561. DOI:
10.1002/1878-0261.13105
.
[25]
Ye K , Fan Q , Yuan M ,et al. Prognostic value of postoperative circulating tumor DNA in patients with early-and intermediate-stage hepatocellular carcinoma[J]. Front Oncol, 2022,12:834992. DOI:
10.3389/fonc.2022.834992
.
[26]
Sivapalan L , Kocher HM , Ross-Adams H ,et al. Molecular profiling of ctDNA in pancreatic cancer: opportunities and challenges for clinical application[J]. Pancreatology, 2021,21(2):363-378. DOI:
10.1016/j.pan.2020.12.017
.
[27]
Sausen M , Phallen J , Adleff V ,et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients[J]. Nat Commun, 2015,6:7686. DOI:
10.1038/ncomms8686
.
[28]
Watanabe K , Nakamura T , Kimura Y ,et al. Tumor-informed approach improved ctDNA detection rate in resected pancreatic cancer[J]. Int J Mol Sci, 2022,23(19):11521. DOI:
10.3390/ijms231911521
.
[29]
Azad TD , Chaudhuri AA , Fang P ,et al. Circulating tumor DNA analysis for detection of minimal residual disease after chemoradiotherapy for localized esophageal cancer[J]. Gastroenterology, 2020,158(3):494-505.e6. DOI:
10.1053/j.gastro.2019.10.039
.
[30]
Yang J , Gong Y , Lam VK ,et al. Deep sequencing of circulating tumor DNA detects molecular residual disease and predicts recurrence in gastric cancer[J]. Cell Death Dis, 2020,11(5):346. DOI:
10.1038/s41419-020-2531-z
.
[31]
Pellini B , Chaudhuri AA . Circulating tumor DNA minimal residual disease detection of non-small-cell lung cancer treated with curative intent[J]. J Clin Oncol, 2022,40(6):567-575. DOI:
10.1200/JCO.21.01929
.
[32]
Malla M , Loree JM , Kasi PM ,et al.
Using circul
ating tumor DNA in colorectal cancer: current and evolving practices
[J]. J Clin Oncol, 2022,40(24):2846-2857. DOI:
10.1200/JCO.21.02615
.
[33]
Moding EJ , Nabet BY , Alizadeh AA ,et al. Detecting liquid remnants of solid tumors: circulating tumor DNA minimal residual disease[J]. Cancer Discov, 2021,11(12):2968-2986. DOI:
10.1158/2159-8290.CD-21-0634
.
[34]
Jennings LJ , Arcila ME , Corless C ,et al. Guidelines for validation of next-generation sequencing-based oncology panels: a joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists[J].
J Mol D
iagn
, 2017,19(3):341-365. DOI:
10.1016/j.jmoldx.2017.01.011
.
[35]
李金明. 高通量测序技术[M]. 北京:科学出版社, 2018.
[36]
Cristiano S , Leal A , Phallen J ,et al. Genome-wide cell-free DNA fragmentation in patients with cancer[J]. Nature, 2019,570(7761):385-389. DOI:
10.1038/s41586-019-1272-6
.
[37]
Mathios D , Johansen JS , Cristiano S ,et al. Detection and characterization of lung cancer using cell-free DNA fragmentomes[J]. Nat Commun, 2021,12(1):5060. DOI:
10.1038/s41467-021-24994-w
.
[38]
Vessies D , Schuurbiers M , van der Noort V ,et al. Combining variant detection and fragment length analysis improves detection of minimal residual disease in postsurgery circulating tumour DNA of stage Ⅱ-IIIA NSCLC patients[J]. Mol Oncol, 2022,16(14):2719-2732. DOI:
10.1002/1878-0261.13267
.
[39]
Parikh AR , Van Seventer EE , Siravegna G ,et al. Minimal residual disease detection using a plasma-only circulating tumor DNA assay in patients with colorectal cancer[J]. Clin Cancer Res, 2021,27(20):5586-5594. DOI:
10.1158/1078-0432.CCR-21-0410
.
[40]
Zviran A , Schulman RC , Shah M ,et al. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring[J]. Nat Med, 2020,26(7):1114-1124. DOI:
10.1038/s41591-020-0915-3
.
[41]
Goutsouliak K , Veeraraghavan J , Sethunath V ,et al. Towards personalized treatment for early stage HER2-positive breast cancer[J]. Nat Rev Clin Oncol, 2020,17(4):233-250. DOI:
10.1038/s41571-019-0299-9
.
[42]
Newman AM , Bratman SV , To J ,et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage[J]. Nat Med, 2014,20(5):548-554. DOI:
10.1038/nm.3519
.
[43]
Razavi P , Li BT , Brown DN ,et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants[J]. Nat Med, 2019,25(12):1928-1937. DOI:
10.1038/s41591-019-0652-7
.
[44]
Powles T , Assaf ZJ , Davarpanah N ,et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma[J]. Nature, 2021,595(7867):432-437. DOI:
10.1038/s41586-021-03642-9
.
[45]
Young A , Nimeiri H , Madison R ,et al. Molecular residual disease (MRD) detection with a tissue comprehensive genomic profiling (CGP)-informed personalized monitoring assay: an exploratory analysis of the IMvigor-010 observation arm[J]. J Clin Oncol,40(6_suppl):448. DOI:
10.1200/JCO.2022.40.6_suppl.448
.
[46]
Gao W , Zhang JT , Cao WQ ,et al. The prognostic value evaluation of a tissue Comprehensive Genomic Profiling (CGP)-informed personalized MRD detection assay in NSCLC[J]. Ann Oncol, 2023,34(S2):S736. DOI:
10.1016/j.annonc.2023.09.751
.
[47]
Chen K , Zhao H , Shi Y ,et al. Perioperative dynamic changes in circulating tumor DNA in patients with lung cancer (DYNAMIC)[J]. Clin Cancer Res, 2019,25(23):7058-7067. DOI:
10.1158/1078-0432.CCR-19-1213
.
[48]
Henriksen TV , Reinert T , Christensen E ,et al. The effect of surgical trauma on circulating free DNA levels in cancer patients-implications for studies of circulating tumor DNA[J]. Mol Oncol, 2020,14(8):1670-1679. DOI:
10.1002/1878-0261.12729
.
[49]
Dasari A , Morris VK , Allegra CJ ,et al. ctDNA applications and integration in colorectal cancer: an NCI Colon and Rectal-Anal Task Forces whitepaper[J]. Nat Rev Clin Oncol, 2020,17(12):757-770. DOI:
10.1038/s41571-020-0392-0
.
[50]
Armbruster DA , Pry T . Limit of blank, limit of detection and limit of quantitation[J]. Clin Biochem Rev, 2008,29Suppl 1(Suppl 1):
S4
9
-S52.
[51]
Mattox AK , Douville C , Wang Y ,et al. The origin of highly elevated cell-free DNA in healthy individuals and patients with pancreatic, colorectal, lung, or ovarian cancer[J]. Cancer Discov, 2023,13(10):2166-2179. DOI:
10.1158/2159-8290.CD-21-1252
.
[52]
Newman AM , Lovejoy AF , Klass DM ,et al. Integrated digital error suppression for improved detection of circulating tumor DNA[J]. Nat Biotechnol, 2016,34(5):547-555. DOI:
10.1038/nbt.3520
.
[53]
Zhang Y , Yao Y , Xu Y ,et al. Pan-cancer circulating tumor DNA detection in over 10, 000 Chinese patients[J]. Nat Commun, 2021,12(1):11. DOI:
10.1038/s41467-020-20162-8
.
[54]
Abbosh C , Birkbak NJ , Swanton C . Early stage NSCLC-challenges to implementing ctDNA-based screening and MRD detection[J]. Nat Rev Clin Oncol, 2018,15(9):577-586. DOI:
10.1038/s41571-018-0058-3
.
[55]
北京市临床检验中心,北京医学会检验医学分会,首都医科大学临床检验诊断学系,等. 高通量测序技术临床规范化应用北京专家共识(第一版肿瘤部分)[J]. 中华医学杂志, 2020,100(9):648-659. DOI:
10.3760/cma.j.issn.0376-2491.2020.09.003
.
备注信息
A
梁智勇(中国医学科学院 北京协和医学院 北京协和医院病理科,北京 100730),Email:
nc.defhcabmupyzgnail
B
周晓燕(复旦大学附属肿瘤医院病理科 复旦大学病理研究所,上海 200032),Email:
mocdef.3ab61001uohzyx
C
执笔人:吴焕文(中国医学科学院 北京协和医学院 北京协和医院病理科,北京 100730);苏丹(浙江省肿瘤医院病理科,杭州 310022)
D
中华医学会病理学分会, 国家病理质控中心. 实体瘤分子残留病灶检测共识[J]. 中华病理学杂志, 2024, 53(11): 1088-1096. DOI: 10.3760/cma.j.cn112151-20240627-00420.
E
所有作者声明无利益冲突
评论 (0条)
注册 登录
时间排序
- 时间排序
暂无评论,发表第一条评论抢沙发
最新推荐
更多
代谢组学在卵巢衰老机制研究中的进展
王超仪 等 中华妇产科杂志 2024,59(11)
Sirtuins家族蛋白在卵巢衰老过程中的作用
王静 等 中华生殖与避孕杂志 2024,44(07)
巨噬细胞与卵巢衰老关系的研究进展
唐茂兴 等 中华医学杂志 2023,103(40)
卵巢衰老与线粒体相关的研究进展
田海丽 等 中华生殖与避孕杂志 2017,37(11)
分享
详细信息
表
访问与引文
阅读权限
参考文献
访问与引用
访问数据
0
0
全部时间 最近30天 最近6个月 最近12个月
MedAI助手(体验版)
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照
文献快照
N/A
N/A
AI总结中

N/A
N/A
快照内容由人工智能生成,供您参考。

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。
0/50
很抱歉,当前对话已达到其限制。
使用"新建对话"按钮开启更多对话。
停止回答
0/2000
信息反馈
中文(简体)
英文
翻译
机器翻译功能由科大讯飞提供技术支持
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。

你好! 今天我能为您提供什么帮助?
0/30
of
很抱歉,当前对话已达到其限制。
使用"新建对话"按钮开启更多对话。
停止回答
扩写 缩写 改写 翻译
0/2000
信息反馈
历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号
小中大
翻译
润色
扩写
缩写
复制
引用