Lymphatic malformations are benign low-flow vascular disease that affect the appearance and organ function of children. The first-line treatment is intravascular sclerotherapy. However, the treatment effect is not ideal for large and multi-organ lesions. In recent years, genetics of lymphatic malformations and mechanisms in animal models and patient-derived lymphatic endothelial cells have been growingly studied. Most pathogenic mutations responsible for lymphatic malformations occur in genes encoding components of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of the rapamycin (PI3K/Akt/mTOR) and other oncogenic signaling pathways. This has led to successful repurposing of some cancer targeted therapeutics to the treatment of lymphatic malformations. Therefore, this review summarizes the advanced progress in targeted therapy of lymphatic malformations based on the identified molecular pathways.
No content published by the journals of Chinese Medical Association may be reproduced or abridged without authorization. Please do not use or copy the layout and design of the journals without permission.
All articles published represent the opinions of the authors, and do not reflect the official policy of the Chinese Medical Association or the Editorial Board, unless this is clearly specified.
淋巴管畸形可合并毛细血管、静脉或毛细血管以及静脉畸形,这是以组织过度生长为特征的综合征中的常见表现,如PIK3CA相关过度生长谱(PIK3CA-related overgrowth spectrum, PROS),包括Klippel-Trenaunay综合征、CLOVES(congenital lipomatous overgrowth, vascular malformations, epidermal nevi, and scoliosis/skeletal/spinal anomalies, CLOVES,先天性脂肪瘤性过度生长、血管畸形、表皮痣和脊柱侧凸/骨骼/脊柱畸形)综合征,CLAPO(capillary malformation of the lower lip, lymphatic malformation of the face and neck, asymmetry and partial/generalized overgrowth, CLAPO,下唇毛细血管畸形、面颈部淋巴管畸形、不对称和部分/全身过度生长)综合征以及Proteus综合征等疾病或综合征
[
8
]。
西罗莫司(sirolimus)又称雷帕霉素(rapamycin),是吸水链霉菌产生的一种大环内酯类抗生素。早期研究发现,西罗莫司具有免疫抑制作用,首先被用于肾脏移植术后的免疫治疗。西罗莫司是哺乳动物雷帕霉素靶标受体(mammalian target of rapamycin, mTOR)抑制剂,属于PI3K家族下游的信号转导因子。mTOR有mTORC1和mTORC2两种不同的复合物。mTORC1主要调节蛋白质合成和细胞周期进程,活化的mTORC1磷酸化并激活核糖体蛋白S6和翻译抑制因子4E-BP1,后者形成eIF4E复合物,与S6共同参与翻译、编码细胞周期调节蛋白mRNA的选择性翻译,促进细胞增殖及促使血管形成。西罗莫司主要通过与mTOR复合物结合,阻断级联反应的进行,从而抑制细胞增殖与血管发生。近年来,在脉管异常疾病中应用西罗莫司的研究取得了长足的进展。
Kunimoto K , Yamamoto Y , Jinnin M . ISSVA classification of vascular anomalies and molecular biology[J]. Int J Mol Sci, 2022,23(4):2358. DOI:
10.3390/ijms23042358
.
Wiegand S , Wichmann G , Dietz A . Treatment of lymphatic malformations with the mTOR inhibitor sirolimus: a systematic review[J]. Lymphat Res Biol, 2018,16(4):330-339. DOI:
10.1089/lrb.2017.0062
.
Ozeki M , Fukao T . Generalized lymphatic anomaly and gorham-stout disease: overview and recent insights[J]. Adv Wound Care, 2019,8(6):230-245. DOI:
10.1089/wound.2018.0850
.
Homayun-Sepehr N , McCarter AL , Helaers R ,et al. KRAS-driven model of Gorham-Stout disease effectively treated with trametinib[J]. JCI Insight, 2021,6(15):e149831. DOI:
10.1172/jci.insight.149831
.
Wassef M , Blei F , Adams D ,et al. Vascular anomalies classification: recommendations from the international society for the study of vascular anomalies[J]. Pediatrics, 2015,136(1):203-214. DOI:
10.1542/peds.2014-3673
.
Bos FL , Caunt M , Peterson-Maduro J ,et al. CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo[J]. Circ Res, 2011,109(5):486-491. DOI:
10.1161/CIRCRESAHA.111.250738
.
Le Guen L , Karpanen T , Schulte D ,et al. Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis[J]. Development, 2014,141(6):1239-1249. DOI:
10.1242/dev.100495
.
Jeltsch M , Jha SK , Tvorogov D ,et al. CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation[J]. Circulation, 2014,129(19):1962-1971. DOI:
10.1161/CIRCULATIONAHA.113.002779
.
Janssen L , Dupont L , Bekhouche M ,et al. ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis[J]. Angiogenesis, 2016,19(1):53-65. DOI:
10.1007/s10456-015-9488-z
.
Wang GX , Muhl L , Padberg Y ,et al. Specific fibroblast subpopulations and neuronal structures provide local sources of Vegfc-processing components during zebrafish lymphangiogenesis[J]. Nat Commun, 2020,11(1):2724. DOI:
10.1038/s41467-020-16552-7
.
Joukov V , Sorsa T , Kumar V ,et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C[J]. EMBO J, 1997,16(13):3898-3911. DOI:
10.1093/emboj/16.13.3898
.
Deng Y , Zhang X , Simons M . Molecular controls of lymphatic VEGFR3 signaling[J]. Arterioscler Thromb Vasc Biol, 2015,35(2):421-429. DOI:
10.1161/ATVBAHA.114.304881
.
Simons M , Gordon E , Claesson-Welsh L . Mechanisms and regulation of endothelial VEGF receptor signalling[J]. Nat Rev Mol Cell Biol, 2016,17(10):611-625. DOI:
10.1038/nrm.2016.87
.
Mouta-Bellum C , Kirov A , Miceli-Libby L ,et al. Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85alpha, p55alpha, and p50alpha[J]. Dev Dyn, 2009,238(10):2670-2679. DOI:
10.1002/dvdy.22078
.
Ichise T , Yoshida N , Ichise H . H-, N- and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice[J]. Development, 2010,137(6):1003-1013. DOI:
10.1242/dev.043489
.
Luks VL , Kamitaki N , Vivero MP ,et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA[J]. J Pediatr, 2015,166(4):1048-1054. DOI:
10.1016/j.jpeds.2014.12.069
.
Boscolo E , Coma S , Luks VL ,et al. AKT hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a patient with lymphatic malformation[J]. Angiogenesis, 2015,18(2):151-162. DOI:
10.1007/s10456-014-9453-2
.
Brouillard P , Schlögel MJ , Homayun Sepehr N ,et al. Non-hotspot PIK3CA mutations are more frequent in CLOVES than in common or combined lymphatic malformations[J]. Orphanet J Rare Dis, 2021,16(1):267. DOI:
10.1186/s13023-021-01898-y
.
Lindhurst MJ , Sapp JC , Teer JK ,et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome[J]. N Engl J Med, 2011,365(7):611-619. DOI:
10.1056/NEJMoa1104017
.
Lapinski PE , Kwon S , Lubeck BA ,et al. RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice[J]. 2012,122(2):733-747. DOI:
10.1172/JCI46116
.
Gupta S , Ramjaun AR , Haiko P ,et al. Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice[J]. Cell, 2007,129(5):957-968. DOI:
10.1016/j.cell.2007.03.051
.
Ozeki M , Aoki Y , Nozawa A ,et al. Detection of NRAS mutation in cell-free DNA biological fluids from patients with kaposiform lymphangiomatosis[J]. Orphanet J Rare Dis, 2019,14(1):215. DOI:
10.1186/s13023-019-1191-5
.
Foster JB , Li D , March ME ,et al. Kaposiform lymphangiomatosis effectively treated with MEK inhibition[J]. EMBO Mol Med, 2020,12(10):e12324. DOI:
10.15252/emmm.202012324
.
Li D , March ME , Gutierrez-Uzquiza A ,et al. ARAF recurrent mutation causes central conducting lymphatic anomaly treatable with a MEK inhibitor[J]. Nat Med, 2019,25(7):1116-1122. DOI:
10.1038/s41591-019-0479-2
.
Nozawa A , Ozeki M , Niihori T ,et al. A somatic activating KRAS variant identified in an affected lesion of a patient with Gorham-Stout disease[J]. J Hum Genet, 2020,65(11):995-1001. DOI:
10.1038/s10038-020-0794-y
.
Chowers G , Abebe-Campino G , Golan H ,et al. Treatment of severe Kaposiform lymphangiomatosis positive for NRAS mutation by MEK inhibition[J]. Pediatr Res, 2023,94(6):1911-1915. DOI:
10.1038/s41390-022-01986-0
.
Kania A , Klein R . Mechanisms of ephrin-Eph signalling in development, physiology and disease[J]. Nat Rev Mol Cell Biol, 2016,17(4):240-256. DOI:
10.1038/nrm.2015.16
.
Chen D , Geng X , Lapinski PE ,et al. RASA1-driven cellular export of collagen IV is required for the development of lymphovenous and venous valves in mice[J]. Development, 2020,147(23):dev192351. DOI:
10.1242/dev.192351
.
Li D , Wenger TL , Seiler C ,et al. Pathogenic variant in EPHB4 results in central conducting lymphatic anomaly[J]. Hum Mol Genet, 2018,27(18):3233-3245. DOI:
10.1093/hmg/ddy218
.
Limaye N , Wouters V , Uebelhoer M ,et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations[J]. Nat Genet, 2009,41(1):118-124. DOI:
10.1038/ng.272
.
Saharinen P , Eklund L , Alitalo K . Therapeutic targeting of the angiopoietin-TIE pathway[J]. Nat Rev Drug Discov, 2017,16(9):635-661. DOI:
10.1038/nrd.2016.278
.
Steagall WK , Moss J . Needle in the haystack: finding the elusive lymphangioleiomyomatosis cell[J]. Am J Respir Crit Care Med, 2020,202(10):1329-1330. DOI:
10.1164/rccm.202006-2436ED
.
Lee S , Park S , Kim HY ,et al. Extended phenotypes of PIEZO1-related lymphatic dysplasia caused by two novel compound heterozygous variants[J]. Eur J Med Genet, 2021,64(10):104295. DOI:
10.1016/j.ejmg.2021.104295
.
Choi D , Park E , Jung E ,et al. ORAI1 activates proliferation of lymphatic endothelial cells in response to laminar flow through Krüppel-like factors 2 and 4[J]. Circ Res, 2017,120(9):1426-1439. DOI:
10.1161/CIRCRESAHA.116.309548
.
Horbach SE , Lokhorst MM , Saeed P ,et al. Sclerotherapy for low-flow vascular malformations of the head and neck: a systematic review of sclerosing agents[J]. J Plast Reconstr Aesthet Surg, 2016,69(3):295-304. DOI:
10.1016/j.bjps.2015.10.045
.
Hominick D , Silva A , Khurana N ,et al. VEGF-C promotes the development of lymphatics in bone and bone loss[J]. Elife, 2018,7:e34323. DOI:
10.7554/eLife.34323
.
Hammill AM , Wentzel M , Gupta A ,et al. Sirolimus for the treatment of complicated vascular anomalies in children[J]. Pediatr Blood Cancer, 2011,57(6):1018-1024. DOI:
10.1002/pbc.23124
.
Ricci KW , Hammill AM , Mobberley-Schuman P ,et al. Efficacy of systemic sirolimus in the treatment of generalized lymphatic anomaly and Gorham-Stout disease[J]. Pediatr Blood Cancer, 2019,66(5):e27614. DOI:
10.1002/pbc.27614
.
Maruani A , Tavernier E , Boccara O ,et al. Sirolimus (rapamycin) for slow-flow malformations in children: the observational-phase randomized clinical performus trial[J]. JAMA Dermatol, 2021,157(11):1289-1298. DOI:
10.1001/jamadermatol.2021.3459
.
Tian RC , Liang Y , Zhang WT ,et al. Effectiveness of sirolimus in the treatment of complex lymphatic malformations: Single center report of 56 cases[J]. J Pediatr Surg, 2020,55(11):2454-2458. DOI:
10.1016/j.jpedsurg.2019.12.021
.
Wiegand S , Dietz A , Wichmann G ,et al. Efficacy of sirolimus in children with lymphatic malformations of the head and neck[J]. Eur Arch Otorhinolaryngol, 2022,48(8):279(8):3801-3810. DOI:
10.1007/s00405-022-07378-8
.
André F , Ciruelos E , Rubovszky G ,et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer[J]. N Engl J Med, 2019,380(20):1929-1940. DOI:
10.1056/NEJMoa1813904
.
Wenger TL , Ganti SL , Bull C ,et al. Alpelisib for the treatment of PIK3CA-related head and neck lymphatic malformations and overgrowth[J]. Genet Med, 2022,24(11):2318-2328. DOI:
10.1016/j.gim.2022.07.026
.
Carracedo A , Ma L , Teruya-Feldstein J ,et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer[J]. J Clin Invest, 2008,118(9):3065-3074. DOI:
10.1172/JCI34739
.
Dori Y , Smith C , Pinto E ,et al. Severe lymphatic disorder resolved with MEK inhibition in a patient with noonan syndrome and SOS1 mutation[J]. Pediatrics, 2020,146(6):e20200167. DOI:
10.1542/peds.2020-0167
.
Partanen TA , Vuola P , Jauhiainen S ,et al. Neuropilin-2 and vascular endothelial growth factor receptor-3 are up-regulated in human vascular malformations[J]. Angiogenesis, 2013,16(1):137-146. DOI:
10.1007/s10456-012-9305-x
.