实验研究
ENGLISH ABSTRACT
免疫浸润在视网膜缺血再灌注损伤中作用的生物信息学分析
王文婷
梁娜
哈文静
彭绍民
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20231026-00152
Bioinformatics analysis of the impact of immune infiltration in retinal ischemia-reperfusion injury
Wang Wenting
Liang Na
Ha Wenjing
Peng Shaomin
Authors Info & Affiliations
Wang Wenting
Aier Eye Medical Center of Anhui Medical University, Hefei 230022, China
Liang Na
Aier Eye Medical Center of Anhui Medical University, Hefei 230022, China
Ha Wenjing
Department of Fundus Disease, Ningxia Aier Eye Hospital, Yinchuan 750000, China
Peng Shaomin
Aier Eye Medical Center of Anhui Medical University, Hefei 230022, China
·
DOI: 10.3760/cma.j.cn115989-20231026-00152
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

目的探索视网膜缺血再灌注损伤(RIRI)中潜在的免疫细胞相关生物标志物。

方法从基因表达综合数据库下载RIRI基因表达谱数据集GSE20521,筛选其差异表达基因(DEGs)。对GSE20521基因集进行GSEA富集分析和ImmuCellAI免疫细胞浸润分析,获得富集通路和免疫细胞浸润相关信息。采用WGCNA及Pearson相关分析筛选与免疫浸润相关程度最高的模块及候选基因。构建候选基因蛋白互作(PPI)网络,并基于CytoHubba插件筛选关键基因。

结果RIRI组GSEA显著富集通路包括γ干扰素(IFN-γ)信号通路、凋亡、肿瘤坏死因子α/核因子κB信号通路、IFN-α信号通路、补体途径、白细胞介素6-信号传导及转录激活蛋白3(IL-6-STAT3)、IL-2-STAT5信号通路及炎症反应等。ImmuCellAI评估结果显示,RIRI组cDC2细胞、单核细胞来源DC细胞、M2巨噬细胞及CD8_Tc细胞比例较正常对照组显著升高(均 P<0.05);pDC细胞、CD4_T细胞、CD4_Tm细胞、辅助性T细胞、调节性T细胞、滤泡性B细胞、嗜酸性粒细胞比例较正常对照组显著降低(均 P<0.05);在RIRI和正常视网膜样本中共筛选出144个DEGs;将DEGs与枢纽模块中基因取交集共获得140个候选基因;GO分析显示细胞因子的正向调节、白细胞介导的免疫反应、伤口愈合、适应性免疫反应、烟酰胺腺嘌呤二核苷酸磷酸氧化复合物、趋化因子结合等均显著富集。KEGG分析共富集50条途径,包括吞噬体、百日咳、利什曼病、肺结核及补体和凝血级联等。基于PPI网络及Cyto-Hubba不同算法进行基因筛选,最终获得3个关键基因,即 Cd68Tlr2Hmox1

结论生物信息学分析结果显示RIRI组织和正常视网膜组织存在不同的免疫微环境,RIRI与多种免疫细胞浸润存在相关性。

缺血再灌注损伤;视网膜;生物信息学;差异表达基因;免疫浸润
ABSTRACT

ObjectiveTo investigate the potential biomarkers associated with immune cells in retinal ischemia-reperfusion injury (RIRI).

MethodsThe RIRI gene expression profile dataset GSE20521 was obtained from the Gene Expression Omnibus database, and the differentially expressed genes (DEGs) were screened.The GSE20521 gene set was subjected to Gene Set Enrichment Analysis (GSEA) and Immune Cell Abundance Identifier (ImmuCellAI), yielding information pertaining to enriched pathways and immune cell infiltration.The Weighted Correlation Network Analysis (WGCNA) and Pearson correlation analysis were employed to identify the hub modules and candidate genes exhibiting the strongest correlation with immune infiltration.Subsequently, the protein-protein interaction (PPI) network of candidate genes was constructed, and key genes were screened using CytoHubba plugin.

ResultsThe significant GSEA enrichment pathways in the RIRI group including the interferon-γ (IFN-γ), apoptosis, tumor necrosis factor-α/nuclear factor-κB, IFN-α, complement pathway, interleukin-6 (IL-6)-(signal transducer and activator of transcription 3)(STAT3) and IL2-STAT5 signaling pathways, as well as inflammatory response.Compared with the normal control group, the results of ImmuCellAI evaluation revealed significant increases in the proportions of cDC2 cells, monocyte-derived DC cells, M2 macrophages, and CD8_Tc cells and decreases in the proportions of pDC cells, CD4_T cells, CD4_Tm cells, helper T cells, regulatory T cells, follicular B cells, and eosinophils in the RIRI group (all at P<0.05).A total of 144 DEGs were obtained between the two groups of samples.Taking the intersection of DEGs and hub module genes, 140 candidate genes were obtained.GO analysis showed significant enrichment of positive regulation of cytokine production, leukocyte mediated immunity, wound healing, adaptive immune response, niacinamide adenine dinucleotide phosphate oxidase complex, and chemokine binding, etc.KEGG analysis enriched 50 pathways, including phagosome, pertussis, leishmaniasis tuberculosis, and complement and coagulation cascades.Three key genes were finally obtained, namely Cd68, Tlr2 and Hmox1, which were screened by PPI and different CytoHubba algorithms.

ConclusionsThe bioinformatics analysis reveals a distinct immune microenvironment in the retina of the RIRI group and normal control group, suggesting a correlation between RIRI and infiltration of multiple immune cell types.

Ischemia-reperfusion injury;Retina;Bioinformatics;Differentially expressed genes;Immunoinfiltration
Peng Shaomin, Email: nc.defudabe.umhanimoahsgnep
引用本文

王文婷,梁娜,哈文静,等. 免疫浸润在视网膜缺血再灌注损伤中作用的生物信息学分析[J]. 中华实验眼科杂志,2024,42(11):997-1005.

DOI:10.3760/cma.j.cn115989-20231026-00152

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
视网膜缺血再灌注损伤(retinal ischemia-reperfusion injury,RIRI)主要发生于视网膜中央动/静脉阻塞,青光眼及糖尿病视网膜病变(diabetic retinopathy,DR)等多种视网膜血管性疾病。视网膜血管病理性破坏或阻塞造成视网膜组织缺血、缺氧,代谢功能障碍等,进而引发氧化应激、免疫炎症反应、坏死性凋亡、细胞焦亡、铁死亡等一系列病理生理过程,导致视网膜上多种细胞死亡和视功能损伤 [ 1 , 2 ]。越来越多的研究表明,免疫微环境和炎症反应在RIRI中起着至关重要的作用 [ 3 ]。因此,通过合理利用免疫微环境中的相关生物标志物或特征通路探索RIRI的免疫炎症反应机制,减轻视网膜缺血损伤,成为治疗RIRI的重要途径之一。本研究拟对大鼠RIRI样本进行系统的生物信息学分析,以分析免疫浸润在RIRI发展中的关键基因,探讨其潜在机制。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Schultz R , Witte OW , Schmeer C Increased frataxin levels protect retinal ganglion cells after acute ischemia/reperfusion in the mouse retina in vivo [J]. Invest Ophthalmol Vis Sci 201657(10)∶4115-4124. DOI: 10.1167/iovs.16-19260 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Dvoriantchikova G , Lypka KR , Adis EV ,et al. Multiple types of programmed necrosis such as necroptosis,pyroptosis,oxytosis/ferroptosis,and parthanatos contribute simultaneously to retinal damage after ischemia-reperfusion[J/OL]. Sci Rep 202212(1)∶17152[2024-01-02]. http://www.ncbi.nlm.nih.gov/pubmed/36229563. DOI: 10.1038/s41598-022-22140-0 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Pronin A , Pham D , An W ,et al. Inflammasome activation induces pyroptosis in the retina exposed to ocular hypertension injury[J/OL]. Front Mol Neurosci 20191236[2024-01-02]. http://www.ncbi.nlm.nih.gov/pubmed/30930743. DOI: 10.3389/fnmol.2019.00036 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Li Y , Wen Y , Liu X ,et al. Single-cell RNA sequencing reveals a landscape and targeted treatment of ferroptosis in retinal ischemia/reperfusion injury[J/OL]. J Neuroinflammation 202219(1)∶261[2024-01-02]. http://www.ncbi.nlm.nih.gov/pubmed/36289494. DOI: 10.1186/s12974-022-02621-9 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Pan WW , Lin F , Fort PE . The innate immune system in diabetic retinopathy[J/OL]. Prog Retin Eye Res 202184100940[2024-01-02]. http://www.ncbi.nlm.nih.gov/pubmed/33429059. DOI: 10.1016/j.preteyeres.2021.100940 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Felger JC , Abe T , Kaunzner UW ,et al. Brain dendritic cells in ischemic stroke:time course,activation state,and origin[J]. Brain Behav Immun 201024(5)∶724-737. DOI: 10.1016/j.bbi.2009.11.002 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Singh D , Dromel PC , Perepelkina T ,et al. C6 cell injection into the optic nerve of long-evans rats:a short-term model of opti c pathway gliomas [J/OL]. Cell Transplant 202029963689720964383[2024-01-02]. http://www.ncbi.nlm.nih.gov/pubmed/33356508. DOI: 10.1177/0963689720964383 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Chen M , Luo C , Zhao J ,et al. Immune regulation in the aging retina[J]. Prog Retin Eye Res 201969159-172. DOI: 10.1016/j.preteyeres.2018.10.003 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Wang JH , Kumar S , Liu GS . Bulk gene expression deconvolution reveals infiltration of M 2 macrophages in retinal neovascularization [J/OL]. Invest Ophthalmol Vis Sci 202162(14)∶22[2024-01-06]. http://www.ncbi.nlm.nih.gov/pubmed/34797904. DOI: 10.1167/iovs.62.14.22 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Meng Z , Chen Y , Wu W ,et al. Exploring the immune infiltration landscape and M 2 macrophage-related biomarkers of proliferative diabetic retinopathy [J/OL]. Front Endocrinol (Lausanne) 202213841813[2024-01-06]. http://www.ncbi.nlm.nih.gov/pubmed/35692390. DOI: 10.3389/fendo.2022.841813 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Homme RP , Singh M , Majumder A ,et al. Remodeling of retinal architecture in diabetic retinopathy:disruption of ocular physiology and visual functions by inflammatory gene products and pyroptosis[J/OL]. Front Physiol 201891268[2024-01-06]. http://www.ncbi.nlm.nih.gov/pubmed/30233418. DOI: 10.3389/fphys.2018.01268 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
McMenamin PG , Saban DR , Dando SJ . Immune cells in the retina and choroid:two different tissue environments that require different defenses and surveillance[J]. Prog Retin Eye Res 20197085-98. DOI: 10.1016/j.preteyeres.2018.12.002 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Miró-Mur F , Urra X , Gallizioli M ,et al. Antigen presentation after stroke[J]. Neurotherapeutics 201613(4):719-728. DOI: 10.1007/s13311-016-0469-8 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Schuhmann MK , Langhauser F , Kraft P ,et al. B cells do not have a major pathophysiologic role in acute ischemic stroke in mice[J/OL]. J Neuroinflammation 201714(1)∶112[2024-01-06]. http://www.ncbi.nlm.nih.gov/pubmed/28576128. DOI: 10.1186/s12974-017-0890-x .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Bonaventura A , Liberale L , Vecchié A ,et al. Update on inflammatory biomarkers and treatments in ischemic stroke[J/OL]. Int J Mol Sci 201617(12)∶1967[2024-01-06]. http://www.ncbi.nlm.nih.gov/pubmed/27898011. DOI: 10.3390/ijms17121967 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Deliyanti D , Figgett WA , Gebhardt T ,et al. CD8 T cells promote pathological angiogenesis in ocular neovascular disease [J]. Arterioscler Thromb Vasc Biol 202343(4)∶522-536. DOI: 10.1161/ATVBAHA.122.318079 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Khanh Vu TH , Chen H , Pan L ,et al. CD4 T-cell responses mediate progressive neurodegeneration in experimental ischemic retinopathy [J]. Am J Pathol 2020190(8)∶1723-1734. DOI: 10.1016/j.ajpath.2020.04.011 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Chen H , Cho KS , Vu T ,et al. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma[J/OL]. Nat Commun 20189(1)∶3209[2024-01-08]. http://www.ncbi.nlm.nih.gov/pubmed/30097565. DOI: 10.1038/s41467-018-05681-9 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Shi L , Sun Z , Su W ,et al. Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke[J/OL]. Immunity 202154(7)∶1527-1542[2024-01-08]. http://www.ncbi.nlm.nih.gov/pubmed/34015256. DOI: 10.1016/j.immuni.2021.04.022 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
André S , Tough DF , Lacroix-Desmazes S ,et al. Surveillance of antigen-presenting cells by CD4 CD25 regulatory T cells in autoimmunity:immunopathogenesis and therapeutic implications [J]. Am J Pathol 2009174(5)∶1575-1587. DOI: 10.2353/ajpath.2009.080987 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Selvaraj UM , Stowe AM . Long-term T cell responses in the brain after an ischemic stroke[J]. Discov Med 201724(134)∶323-333.
返回引文位置Google Scholar
百度学术
万方数据
[22]
Tang Z , Ju Y , Dai X ,et al. HO-1-mediated ferroptosis as a target for protection against retinal pigment epithelium degeneration[J/OL]. Redox Biol 202143101971[2024-01-10]. http://www.ncbi.nlm.nih.gov/pubmed/33895485. DOI: 10.1016/j.redox.2021.101971 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Li H , Liu B , Lian L ,et al. High dose expression of heme oxigenase-1 induces retinal degeneration through ER stress-related DDIT3[J/OL]. Mol Neurodegener 202116(1)∶16[2024-01-10]. http://www.ncbi.nlm.nih.gov/pubmed/33691741. DOI: 10.1186/s13024-021-00437-4 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Huang Y , Peng J , Liang Q Identification of key ferroptosis genes in diabetic retinopathy based on bioinformatics analysis[J/OL]. PLoS One 202318(1)∶e0280548[2024-01-10]. http://www.ncbi.nlm.nih.gov/pubmed/36689408. DOI: 10.1371/journal.pone.0280548 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Florindo HF , Kleiner R , Vaskovich-Koubi D ,et al. Immune-mediated approaches against COVID-19[J]. Nat Nanotechnol 202015(8)∶630-645. DOI: 10.1038/s41565-020-0732-3 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Filippi CM , Ehrhardt K , Estes EA ,et al. TLR2 signaling improves immunoregulation to prevent type 1 diabetes[J]. Eur J Immunol 201141(5)∶1399-1409. DOI: 10.1002/eji.200939841 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Feng L , Ju M , Lee K ,et al. A proinflammatory function of Toll-like receptor 2 in the retinal pigment epithelium as a novel target for reducing choroidal neovascularization in age-related macular degeneration[J]. Am J Pathol 2017187(10)∶2208-2221. DOI: 10.1016/j.ajpath.2017.06.015 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Sun D , Qu J , Jakobs TC . Reversible reactivity by optic nerve astrocytes[J]. Glia 201361(8)∶1218-1235. DOI: 10.1002/glia.22507 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
彭绍民,Email: nc.defudabe.umhanimoahsgnep
B

王文婷:实施研究、分析数据、论文撰写;梁娜:分析解释数据;哈文静:分析数据、指导实验;彭绍民:指导研究、论文修改审阅

C
所有作者均声明不存在利益冲突
D
银川市科技计划 (2021-SF-19)
宁夏回族自治区卫生健康委员会系统科研课题项目 (2022-NWKY-079)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号