综述
ENGLISH ABSTRACT
小鼠近视模型的影响因素及研究进展
刘素素
石梦海 [综述]
张红敏 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20240108-00011
Influencing factors and research progress in the mouse model of myopia
Liu Susu
Shi Menghai
Zhang Hongmin
Authors Info & Affiliations
Liu Susu
Henan Provincial People's Hospital, Henan Eye Hospital, Henan Key Laboratory of Ophthalmology and Visual Science, Department of Ophthalmology, Zhengzhou University People's Hospital, Zhengzhou 450003, China
Shi Menghai
Henan Provincial People's Hospital, Henan Eye Hospital, Henan Key Laboratory of Ophthalmology and Visual Science, Department of Ophthalmology, Zhengzhou University People's Hospital, Zhengzhou 450003, China
Zhang Hongmin
Henan Provincial People's Hospital, Henan Eye Hospital, Henan Key Laboratory of Ophthalmology and Visual Science, Department of Ophthalmology, Zhengzhou University People's Hospital, Zhengzhou 450003, China
·
DOI: 10.3760/cma.j.cn115989-20240108-00011
274
81
0
0
1
0
PDF下载
APP内阅读
摘要

近年来,近视患病率居高不下,已成为全球关注的公共卫生问题。对近视发病机制的深入探索有助于实现近视的精准防控。动物模型是研究发病机理和防治方法的重要工具。小鼠是常用的实验动物,具有易繁殖饲养、可基因编辑等优势,在近视机理研究中备受青睐。然而,由于小鼠眼球较小,增加了屈光度和眼轴精准测量的难度,且正常小鼠屈光度随周龄变化规律与人类相反。本文综述了小鼠眼部组织结构特点,包括角膜、晶状体、玻璃体、视网膜和巩膜,以及小鼠屈光发育规律和近视模型的制作和判定方法的最新进展,以期为后续开展近视研究时选择适合的模型动物和建模方法提供参考。

近视;小鼠;屈光发育;形觉剥夺;光学离焦;屈光度;眼轴长度
ABSTRACT

In recent years, the high prevalence of myopia has become a global public health concern.Understanding the mechanism will help to achieve precise prevention and treatment of myopia.Animal models are important tools for studying the pathogenesis and prevention strategies.Mice are commonly used in myopia research, because they are easy to breed, feed and genetically manipulate.However, their small eye size makes it difficult to accurately measure the changes in biological parameters such as refraction and axial length.In addition, the refractive developmental pattern of mice is opposite to that of humans.This article reviews the structural features of the mouse cornea, lens, vitreous body, retina and sclera, the pattern of refractive development, and the latest progress about the establishment and evaluation of murine myopia models to provide some hints and references for further research.

Myopia;Mouse;Refractive development;Form deprivation;Optical defocus;Refraction;Axial length, eye
Zhang Hongmin, Email: mocdef.3ab616090mhz
引用本文

刘素素,石梦海,张红敏. 小鼠近视模型的影响因素及研究进展[J]. 中华实验眼科杂志,2024,42(11):1065-1072.

DOI:10.3760/cma.j.cn115989-20240108-00011

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
近视是眼球屈光力与眼轴长度不匹配,导致远处物体成像于视网膜前的一种屈光不正状态 [ 1 ]。近几十年来,近视患病率急剧升高且发病年龄趋于低龄化,致使高度近视患者数量日趋庞大 [ 2 , 3 ],显著增加了青光眼、视网膜脱离、黄斑变性等并发症的终生罹患风险。这些并发症可导致不可逆的视力损害甚至致盲 [ 4 ]。近视矫正及其并发症的治疗给个人和社会均造成了沉重的经济负担 [ 5 ]。尽管国内外对近视的研究愈发重视,但目前近视的发病机制尚不完全清楚,而动物模型是探索疾病机理和治疗方法不可或缺的工具。目前,近视研究常用的实验动物有鸡、豚鼠、小鼠、树鼩、狨猴、恒河猴、兔子及斑马鱼等 [ 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 ]。有研究曾对上述模型动物的优缺点进行比较。总体而言,与鸡和斑马鱼等非哺乳类动物相比,小鼠的眼球结构与人类更为相似;与其他哺乳类动物(如豚鼠、树鼩、狨猴等)相比,小鼠的基因组数据完备,便于进行基因敲除和基因编辑,且有多种市售抗体可供选择,使其在近视机理研究中具有明显优势 [ 14 , 15 , 16 ]。目前,国内外已有多个团队成功建立了小鼠近视模型 [ 13 , 17 , 18 , 19 ]。但因为实验条件和研究方法的不同,得出的结果和结论尚存在一些差异和争议。本文将从小鼠眼球结构、屈光发育规律、近视模型的制作和判定方法等角度,对小鼠近视模型的影响因素进行分析,以期为后续近视相关研究提供参考。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Harb EN , Wildsoet CF . Origins of refractive errors:environmental and genetic factors[J]. Annu Rev Vis Sci 2019547-72. DOI: 10.1146/annurev-vision-091718-015027 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Long E , Wu X , Ding X ,et al. Real-world big data demonstrates prevalence trends and developmental patterns of myopia in China:a retrospective,multicenter study[J/OL]. Ann Transl Med 20219(7)∶554[2024-01-08]. http://www.ncbi.nlm.nih.gov/pubmed/33987252. DOI: 10.21037/atm-20-6663 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Tsai TH , Liu YL , Ma IH ,et al. Evolution of the prevalence of myopia among Taiwanese schoolchildren:a review of survey data from 1983 through 2017[J]. Ophthalmology 2021128(2)∶290-301. DOI: 10.1016/j.ophtha.2020.07.017 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Verhoeven VJ , Wong KT , Buitendijk GH ,et al. Visual consequences of refractive errors in the general population[J]. Ophthalmology 2015122(1)∶101-109. DOI: 10.1016/j.ophtha.2014.07.030 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
杨怡芳谢伯林钟华近视诊治的社会经济负担评估进展[J]. 中华实验眼科杂志 201937(7)∶582-586. DOI: 10.3760/cma.j.issn.2095-0160.2019.07.017 .
返回引文位置Google Scholar
百度学术
万方数据
Yang YF , Xie BL , Zhong H Evaluation progress of socioeconomic burden of diagnosis and treatment of myopia[J]. Chin J Exp Ophthalmol 201937(7)∶582-586. DOI: 10.3760/cma.j.issn.2095-0160.2019.07.017 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[6]
Zhang Y , Azmoun S , Hang A ,et al. Retinal defocus and form-deprivation induced regional differential gene expression of bone morphogenetic proteins in chick retinal pigment epithelium[J]. J Comp Neurol 2020528(17)∶2864-2873. DOI: 10.1002/cne.24957 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
She M , Li B , Li T ,et al. Dynamic changes of AREG in the sclera during the development of form-deprivation myopia in guinea pigs[J]. Curr Eye Res 202247(3)∶477-483. DOI: 10.1080/02713683.2021.1998543 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Brown DM , Kowalski MA , Paulus QM ,et al. Altered structure and function of murine sclera in form-deprivation myopia[J]. Invest Ophthalmol Vis Sci 202263(13)∶13. DOI: 10.1167/iovs.63.13.13 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
El Hamdaoui M , Levy AM , Gaonkar M ,et al. Effect of scleral crosslinking using multiple doses of genipin on experimental progressive myopia in tree shrews[J/OL]. Transl Vis Sci Technol 202110(5)∶1[2024-01-08]. http://www.ncbi.nlm.nih.gov/pubmed/34003978. DOI: 10.1167/tvst.10.5.1 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Whatham AR , Lunn D , Judge SJ . Effects of monocular atropinization on refractive error and eye growth in infant new world monkeys[J]. Invest Ophthalmol Vis Sci 201960(7)∶2623-2630. DOI: 10.1167/iovs.18-24490 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Yang X , Yang Y , Wang Y ,et al. Protective effects of sunlight exposure against PRK-induced myopia in infant rhesus monkeys[J]. Ophthalmic Physiol Opt 202141(4)∶911-921. DOI: 10.1111/opo.12826 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Rong S , Wang C , Han B ,et al. Iontophoresis-assisted accelerated riboflavin/ultraviolet A scleral cross-linking:a potenti al treatment for pathologic myopia [J]. Exp Eye Res 201716237-47. DOI: 10.1016/j.exer.2017.07.002 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Lin MY , Lin IT , Wu YC ,et al. Stepwise candidate drug screening for myopia control by using zebrafish,mouse,and Golden Syrian Hamster myopia models[J/OL]. EBioMedicine 202165103263[2024-01-08]. http://www.ncbi.nlm.nih.gov/pubmed/33691248. DOI: 10.1016/j.ebiom.2021.103263 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Schaeffel F , Feldkaemper M Animal models in myopia research[J]. Clin Exp Optom 201598(6)∶507-517. DOI: 10.1111/cxo.12312 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
周翔天瞿佳吕帆小鼠是否为理想的近视眼动物模型[J]. 中华眼科杂志 200844(7)∶584-586. DOI: 10.3321/j.issn:0412-4081.2008.07.003 .
返回引文位置Google Scholar
百度学术
万方数据
Zhou XT , Qu J , Lyu F Dose the mice is ideal animal myopia model?[J]. Chin J Ophthalmol 200844(7)∶584-586. DOI: 10.3321/j.issn:0412-4081.2008.07.003 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[16]
Troilo D , Smith EL 3rd , Nickla DL ,et al. IMI - report on experimental models of emmetropization and myopia [J]. Invest Ophthalmol Vis Sci 201960(3)∶M31-M88. DOI: 10.1167/iovs.18-25967 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Ji S , Ye L , Zhang L ,et al. Retinal neurodegeneration in a mouse model of green-light-induced myopia[J/OL]. Exp Eye Res 2022223109208[2024-01-08]. http://www.ncbi.nlm.nih.gov/pubmed/35944726. DOI: 10.1016/j.exer.2022.109208 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Ma Z , Jeong H , Yang Y ,et al. Contralateral effect in progression and recovery of lens-induced myopia in mice[J]. Ophthalmic Physiol Opt 202343(3)∶558-565. DOI: 10.1111/opo.13125 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Shu Z , Chen K , Wang Q ,et al. The role of retinal dopamine D1 receptors in ocular growth and myopia development in mice[J]. J Neurosci 202343(48)∶8231-8242. DOI: 10.1523/JNEUROSCI.1196-23.2023 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Mutti DO , Mitchell GL , Jones LA ,et al. Axial growth and changes in lenticular and corneal power during emmetropization in infants[J]. Invest Ophthalmol Vis Sci 200546(9)∶3074-3080. DOI: 10.1167/iovs.04-1040 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Mutti DO , Sinnott LT , Lynn Mitchell G ,et al. Ocular component development during infancy and early childhood[J]. Optom Vis Sci 201895(11)∶976-985. DOI: 10.1097/OPX.0000000000001296 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
中华预防医学会公共卫生眼科分会中国学龄儿童眼球远视储备、眼轴长度、角膜曲率参考区间及相关遗传因素专家共识(2022年)[J]. 中华眼科杂志 202258(2)∶96-102. DOI: 10.3760/cma.j.cn112142-20210603-00267 .
返回引文位置Google Scholar
百度学术
万方数据
Public Health Ophthalmology Branch of Chinese Preventive Medicine Association. Chinese expert consensus on the reference interval of ocular hyperopia reserve,axial length,corneal curvature and genetic factors in school-age children (2022)[J]. Chin J Ophthalmol 202258(2)∶96-102. DOI: 10.3760/cma.j.cn112142-20210603-00267 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[23]
Bikbov MM , Kazakbaeva GM , Fakhretdinova AA ,et al. Associations between axial length,corneal refractive power and lens thickness in children and adolescents:The Ural Children Eye Study[J/OL]. Acta Ophthalmol 2024102(1)∶e94-e104[2024-03-10]. http://www.ncbi.nlm.nih.gov/pubmed/37144825. DOI: 10.1111/aos.15692 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
He X , Sankaridurg P , Naduvilath T ,et al. Normative data and percentile curves for axial length and axial length/corneal curvature in Chinese children and adolescents aged 4-18 years[J]. Br J Ophthalmol 2023107(2)∶167-175. DOI: 10.1136/bjophthalmol-2021-319431 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Zhou X , Shen M , Xie J ,et al. The development of the refractive status and ocular growth in C57BL/6 mice[J]. Invest Ophthalmol Vis Sci 200849(12)∶5208-5214. DOI: 10.1167/iovs.07-1545 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Tkatchenko TV , Shen Y , Tkatchenko AV . Analysis of postnatal eye development in the mouse with high-resolution small animal magnetic resonance imaging[J]. Invest Ophthalmol Vis Sci 201051(1)∶21-27. DOI: 10.1167/iovs.08-2767 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Sundin OH . The mouse ' s eye and Mfrp:not quite human [J]. Ophthalmic Genet 200526(4)∶153-155. DOI: 10.1080/13816810500374359 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Chakraborty R , Park HN , Tan CC ,et al. association of body length with ocular parameters in mice[J]. Optom Vis Sci 201794(3)∶387-394. DOI: 10.1097/OPX.0000000000001036 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Overby DR , Bertrand J , Schicht M ,et al. The structure of the trabecular meshwork,its connections to the ciliary muscle,and the effect of pilocarpine on outflow facility in mice[J]. Invest Ophthalmol Vis Sci 201455(6)∶3727-3736. DOI: 10.1167/iovs.13-13699 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Huang F , Huang S , Xie R ,et al. The effect of topical administration of cyclopentolate on ocular biometry:an analysis for mouse and human models[J]. Sci Rep 20177(1)∶9952. DOI: 10.1038/s41598-017-09924-5 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
王平陶利娟杨俊芳婴儿眼球发育及屈光状态变化[J]. 中国斜视与小儿眼科杂志 200917(1)∶11-14. DOI: 10.3969/j.issn.1005-328X.2009.01.004 .
返回引文位置Google Scholar
百度学术
万方数据
Wang P , Tao LJ , Yang JF ,et al. Development of ocular optical components and refractive error in infants[J]. Chin J Strabi Pediat Ophthalmol 200917(1)∶11-14. DOI: 10.3969/j.issn.1005-328X.2009.01.004 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[32]
Xin X , Guo Q , Ming S ,et al. High-resolution image analysis reveals a decrease in lens thickness and cone density in a cohort of young myopic patients[J/OL]. Front Med (Lausanne) 20218796778[2024-01-08]. http://pubmed.ncbi.nlm.nih.gov/34977098. DOI: 10.3389/fmed.2021.796778 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Wong HB , Machin D , Tan SB ,et al. Ocular component growth curves among Singaporean children with different refractive error status[J]. Invest Ophthalmol Vis Sci 201051(3)∶1341-1347. DOI: 10.1167/iovs.09-3431 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Schmucker C , Schaeffel F A paraxial schematic eye model for the growing C57BL/6 mouse[J]. Vision Res 200444(16)∶1857-1867. DOI: 10.1016/j.visres.2004.03.011 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Tkatchenko TV , Shen Y , Tkatchenko AV . Mouse experimental myopia has features of primate myopia[J]. Invest Ophthalmol Vis Sci 201051(3)∶1297-1303. DOI: 10.1167/iovs.09-4153 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Liu Z , Xiu Y , Qiu F ,et al. Canonical Wnt signaling drives myopia development and can be pharmacologically modulated[J/OL]. Invest Ophthalmol Vis Sci 202162(9)∶21[2024-01-08]. http://pubmed.ncbi.nlm.nih.gov/34259818. DOI: 10.1167/iovs.62.9.21 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Grünert U , Martin PR . Cell types and cell circuits in human and non-human primate retina[J/OL]. Prog Retin Eye Res 2020:100844[2024-01-08]. http://pu bmed.ncbi.nlm.nih.gov/32032773 . DOI: 10.1016/j.preteyeres.2020.100844 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Cheng SC , Lam CS , Yap MK . Retinal thickness in myopic and non-myopic eyes[J]. Ophthalmic Physiol Opt 201030(6)∶776-784. DOI: 10.1111/j.1475-1313.2010.00788.x .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Tian F , Zheng D , Zhang J ,et al. Choroidal and retinal thickness and axial eye elongation in Chinese junior students[J/OL]. Invest Ophthalmol Vis Sci 202162(9)∶26[2024-01-08]. http://www.ncbi.nlm.nih.gov/pubmed/34279570. DOI: 10.1167/iovs.62.9.26 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Keeley PW , Patel SS , Reese BE . Cell numbers,cell ratios,and developmental plasticity in the rod pathway of the mouse retina[J]. J Anat 2023243(2)∶204-222. DOI: 10.1111/joa.13653 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Jeon CJ , Strettoi E , Masland RH . The major cell populations of the mouse retina[J]. J Neurosci 199818(21)∶8936-8946. DOI: 10.1523/JNEUROSCI.18-21-08936.1998 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Curcio CA , Allen KA . Topography of ganglion cells in human retina[J]. J Comp Neurol 1990300(1)∶5-25. DOI: 10.1002/cne.903000103 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Liu Z , Kurokawa K , Zhang F ,et al. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina[J]. Proc Natl Acad Sci U S A 2017114(48)∶12803-12808. DOI: 10.1073/pnas.1711734114 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Prusky GT , Alam NM , Beekman S ,et al. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system[J]. Invest Ophtha lmol Vis Sci 200445(12)∶4611-4616. DOI: 10.1167/iovs.04-0541 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Dhakal R , Vupparaboina KK , Verkicharla PK . Anterior sclera undergoes thinning with increasing degree of myopia[J]. Invest Ophthalmol Vis Sci 202061(4)∶6. DOI: 10.1167/iovs.61.4.6 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Deng J , Jin J , Lv M ,et al. Distribution of scleral thickness and associated factors in 810 Chinese children and adolescents:a swept-source optical coherence tomography study[J/OL]. Acta Ophthalmol 201997(3)∶e410-e418[2024-01-08]. http://pubmed.ncbi.nlm.nih.gov/30178606. DOI: 10.1111/aos.13788 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
李昊儒魏瑞华高度近视眼后巩膜葡萄肿与眼底结构和微循环的关系[J]. 中华实验眼科杂志 2023,(5)∶507-511. DOI: 10.3760/cma.j.cn115989-20210526-00324 .
返回引文位置Google Scholar
百度学术
万方数据
Li HR , Wei RH . Relationship between posterior staphyloma and fundus structure and microcirculation in high myopia[J]. Chin J Exp Ophthalmol 2023,(5)∶507-511. DOI: 10.3760/cma.j.cn115989-20210526-00324 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[48]
Harper AR , Summers JA . The dynamic sclera:extracellular matrix remodeling in normal ocular growth a nd myopia development [J]. Exp Eye Res 2015133100-111. DOI: 10.1016/j.exer.2014.07.015 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Zhou X , Ji F , An J ,et al. Experimental murine myopia induces collagen type Iα1 (COL1A1) DNA methylation and altered COL1A1 messenger RNA expression in sclera[J]. Mol Vis 2012181312-1324.
返回引文位置Google Scholar
百度学术
万方数据
[50]
Chen Z , Xiao K , Long Q Up-regulation of NLRP3 in the sclera correlates with myopia progression in a form-deprivation myopia mouse model[J/OL]. Front Biosci (Landmark Ed) 202328(2)∶27[2024-01-08]. http://pubmed.ncbi.nlm.nih.gov/36866548. DOI: 10.31083/j.fbl2802027 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Zhao F , Zhang D , Zhou Q ,et al. Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis[J/OL]. EBioMedicine 202057102878[2024-01-08]. http://pubmed.ncbi.nlm.nih.gov/32652319. DOI: 10.1016/j.ebiom.2020.102878 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Wu H , Chen W , Zhao F ,et al. Scleral hypoxia is a target for myopia control[J]. Proc Natl Acad Sci U S A 2018115(30)∶E7091-E7100. DOI: 10.1073/pnas.1721443115 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Gong X , Wu XH , Liu AL ,et al. Optic nerve crush modulates refractive development of the C57BL/6 mouse by changing multiple ocular dimensions[J/OL]. Brain Res 20201726146537[2024-01-08]. http://www.ncbi.nlm.nih.gov/pubmed/31672473. DOI: 10.1016/j.brainres.2019.146537 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Pardue MT , Faulkner AE , Fernandes A ,et al. High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect[J]. Invest Ophthalmol Vis Sci 200849(2)∶706-712. DOI: 10.1167/iovs.07-0643 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Barathi VA , Boopathi VG , Yap EP ,et al. Two models of experimental myopia in the mouse[J]. Vision Res 200848(7)∶904-916. DOI: 10.1016/j.visres.2008.01.004 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
Schaeffel F , Burkhardt E , Howland HC ,et al. Measurement of refractive state and deprivation myopia in two strains of mice[J]. Optom Vis Sci 200481(2)∶99-110. DOI: 10.1097/00006324-200402000-00008 .
返回引文位置Google Scholar
百度学术
万方数据
[57]
纪风涛李蕖祝银玲C57BL/6小鼠形觉剥夺性近视动物模型的建立[J]. 中华眼科杂志 200945(11)∶1020-1026. DOI: 10.3760/cma.j.issn.0412-4081.2009.11.014 .
返回引文位置Google Scholar
百度学术
万方数据
[58]
Tejedor J , de la Villa P Refractive changes induced by form deprivation in the mouse eye[J]. Invest Ophthalmol Vis Sci 200344(1)∶32-36. DOI: 10.1167/iovs.01-1171 .
返回引文位置Google Scholar
百度学术
万方数据
[59]
Gu Y , Xu B , Feng C ,et al. A Head-mounted spectacle frame for the study of mouse lens-induced myopia[J/OL]. J Ophthalmol 201620168497278[2024-01-08]. http://pubmed.ncbi.nlm.nih.gov/26904275. DOI: 10.1155/2016/8497278 .
返回引文位置Google Scholar
百度学术
万方数据
[60]
Zhou X , An J , Wu X ,et al. Relative axial myopia induced by prolonged light exposure in C57BL/6 mice[J]. Photochem Photobiol 201086(1)∶131-137. DOI: 10.1111/j.1751-1097.2009.00637.x .
返回引文位置Google Scholar
百度学术
万方数据
[61]
Yu Y , Chen H , Tuo J ,et al. Effects of flickering light on refraction and changes in eye axial length of C57BL/6 mice[J]. Ophthalmic Res 201146(2)∶80-87. DOI: 10.1159/000323179 .
返回引文位置Google Scholar
百度学术
万方数据
[62]
Faulkner AE , Kim MK , Iuvone PM ,et al. Head-mounted goggles for murine form deprivation myopia[J]. J Neurosci Methods 2007161(1)∶96-100. DOI: 10.1016/j.jneumeth.2006.10.011 .
返回引文位置Google Scholar
百度学术
万方数据
[63]
Jiang X , Kurihara T , Kunimi H ,et al. A highly efficient murine model of experimental myopia[J/OL]. Sci Rep 20188(1)∶2026[2024-01-08]. http://pubmed.ncbi.nlm.nih.gov/29391484. DOI: 10.1038/s41598-018-20272-w .
返回引文位置Google Scholar
百度学术
万方数据
[64]
Goto S , Muroy SE , Zhang Y ,et al. Gene expression signatures of contact lens-induced myopia in guinea pi g retinal pigment epithelium [J/OL]. Invest Ophthalmol Vis Sci 202263(9)∶25[2024-01-08]. http://www.ncbi.nlm.nih.gov/pubmed/36006019. DOI: 10.1167/iovs.63.9.25 .
返回引文位置Google Scholar
百度学术
万方数据
[65]
Benavente-Perez A , Nour A , Troilo D Short interruptions of imposed hyperopic defocus earlier in treatment are more effective at preventing myopia development[J/OL]. Sci Rep 20199(1)∶11459[2024-01-08]. https://pubmed.ncbi.nlm.nih.gov/31391523. DOI: 10.1038/s41598-019-48009-3 .
返回引文位置Google Scholar
百度学术
万方数据
[66]
Jeong H , Kurihara T , Jiang X ,et al. Suppressive effects of violet light transmission on myopia progression in a mouse model of lens-induced myopia [J/OL]. Exp Eye Res 2023228109414[2024-01-08]. http://www.ncbi.nlm.nih.gov/pubmed/36764596. DOI: 10.1016/j.exer.2023.109414 .
返回引文位置Google Scholar
百度学术
万方数据
[67]
孙明甡宋彦铮张丰菊Lumican转基因小鼠形觉剥夺性近视眼模型眼球生物学参数变化[J]. 中华眼科杂志 201652(11)∶850-855. DOI: 10.3760/cma.j.issn.0412-4081.2016.11.009 .
返回引文位置Google Scholar
百度学术
万方数据
Sun MS , Song YZ , Zhang FJ ,et al. Changes of ocular biological parameters and Lumican expression in the monocularly deprivation myopic model of mutant Lumican transgenic mice[J]. Chin J Ophthalmol 201652(11)∶850-855. DOI: 10.3760/cma.j.issn.0412-4081.2016.11.009 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[68]
Hn P , Qazi Y , Tan C ,et al. Assessment of axial length measurements in mouse eyes[J]. Optom Vis Sci 201289(3)∶296-303. DOI: 10.1097/OPX.0b013e31824529e5 .
返回引文位置Google Scholar
百度学术
万方数据
[69]
Schmucker C , Schaeffel F In vivo biometry in the mouse eye with low coherence interferometry [J]. Vision Res 200444(21)∶2445-2456. DOI: 10.1016/j.visres.2004.05.018 .
返回引文位置Google Scholar
百度学术
万方数据
[70]
Glickstein M , Millodot M Retinoscopy and eye size[J]. Science 1970168(3931)∶605-606. DOI: 10.1126/science.168.3931.605 .
返回引文位置Google Scholar
百度学术
万方数据
[71]
Geng Y , Schery LA , Sharma R ,et al. Optical properties of the mouse eye[J]. Biomed Opt Express 20112(4)∶717-738. DOI: 10.1364/BOE.2.000717 .
返回引文位置Google Scholar
百度学术
万方数据
[72]
Wu W , Su Y , Hu C ,et al. Hypoxia-induced scleral HIF-2α upregulation contributes to rises in MMP-2 expression and myopia development in mice[J/OL]. Invest Ophthalmol Vis Sci 202263(8)∶2[ 2024-01-0 8 ]. http://pubmed.ncbi.nlm.nih.gov/35802383. DOI: 10.1167/iovs.63.8.2 .
返回引文位置Google Scholar
百度学术
万方数据
[73]
Storm T , Heegaard S , Christensen EI ,et al. Megalin-deficiency causes high myopia,retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice[J]. Cell Tissue Res 2014358(1)∶99-107. DOI: 10.1007/s00441-014-1919-4 .
返回引文位置Google Scholar
百度学术
万方数据
[74]
Aikio M , Hurskainen M , Brideau G ,et al. Collagen ⅩⅧ short isoform is critical for retinal vascularization,and overexpression of the Tsp-1 domain affects eye growth and cataract formation[J]. Invest Ophthalmol Vis Sci 201354(12)∶7450-7462. DOI: 10.1167/iovs.13-13039 .
返回引文位置Google Scholar
百度学术
万方数据
[75]
Zhao F , Li Q , Chen W ,et al. Dysfunction of VIPR2 leads to myopia in humans and mice[J]. J Med Genet 202259(1)∶88-100. DOI: 10.1136/jmedgenet-2020-107220 .
返回引文位置Google Scholar
百度学术
万方数据
[76]
Tian Q , Tong P , Chen G ,et al. GLRA2 gene mutations cause high myopia in humans and mice [J]. J Med Genet 202360(2)∶193-203. DOI: 10.1136/jmedgenet-2022-108425 .
返回引文位置Google Scholar
百度学术
万方数据
[77]
Chen J , Lian P , Zhao X ,et al. PSMD3 gene mutations cause pathological myopia [J]. J Med Genet 202360(9)∶918-924. DOI: 10.1136/jmg-2022-108978 .
返回引文位置Google Scholar
百度学术
万方数据
[78]
Szczerkowska KI , Petrezselyova S , Lindovsky J ,et al. Myopia disease mouse models:a missense point mutation (S673G) and a protein-truncating mutation of the Zfp644 mimic human disease phenotype[J/OL]. Cell Biosci 2019921[2024-01-08]. http://www.ncbi.nlm.nih.gov/pubmed/30834109. DOI: 10.1186/s13578-019-0280-4 .
返回引文位置Google Scholar
百度学术
万方数据
[79]
Wilmet B , Callebert J , Duvoisin R ,et al. Mice lacking Gpr179 with complete congenital stationary night blindness are a good model for myopia[J/OL]. Int J Mol Sci 202224(1)∶219[2024-01-08]. http://www.ncbi.nlm.nih.gov/pubmed/36613663. DOI: 10.3390/ijms24010219 .
返回引文位置Google Scholar
百度学术
万方数据
[80]
Tkatchenko AV , Tkatchenko TV , Guggenheim JA ,et al. APLP2 regulates refractive error and myopia development in mice and humans[J/OL]. PLoS Genet 201511(8)∶e1005432[2024-01-08]. http://www.ncbi.nlm.nih.gov/pubmed/26313004. DOI: 10.1371/journal.pgen.1005432 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
张红敏,Email: mocdef.3ab616090mhz
B
所有作者均声明不存在利益冲突
C
河南省医学科技攻关计划项目 (LHGJ20210073)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号