专家述评
ENGLISH ABSTRACT
关注人工智能在斜视诊疗中的应用
刘陇黔
吴达文
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20240611-00149
Focusing on the application of artificial intelligence in the diagnosis and treatment of strabismus
Liu Longqian
Wu Dawen
Authors Info & Affiliations
Liu Longqian
Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China
Wu Dawen
Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China
·
DOI: 10.3760/cma.j.cn115989-20240611-00149
242
56
0
4
5
0
PDF下载
APP内阅读
摘要

斜视的尽早诊断和合理干预对改善患者预后具有重要意义,当前斜视的筛查和诊断主要依赖人工检查,存在人力资源不足和误诊、漏诊风险。近年来,人工智能在斜视领域的应用迅猛发展,涵盖斜视筛查、诊断、手术参数估计及预后预测等方面。基于视频、眼位照片及彩色眼底照相的深度学习模型在斜视筛查和诊断中显示出巨大潜力。尽管AI在斜视诊疗中取得了显著成效,但研究多排除复杂斜视类型,依赖静态、单模态数据,其实用性和普适性仍需进一步提高。未来,结合大模型技术和多模态数据的智能诊疗平台的建设将提升斜视的管理和眼保健水平,有助于实现斜视的个性化精准诊疗。

斜视;人工智能;深度学习;ChatGPT;大模型;多模态
ABSTRACT

Early diagnosis and appropriate intervention of strabismus are crucial for improving patient outcomes.Currently, strabismus screening and diagnosis rely on manual examination, which is challenged by limited human resources and the risk of misdiagnosis.Recently, artificial intelligence (AI) has made rapid progress in strabismus, covering screening, diagnosis, surgical parameter estimation and prognosis prediction.Deep learning models based on video, eye and fundus photographs show great potential.Despite significant achievements, AI studies often exclude complex strabismus types and rely on static, unimodal data, which limits practicality.Future integration of large model technology and multimodal data into intelligent diagnostic platforms will improve strabismus management and eye care, enabling personalized and precise treatment.

Strabismus;Artificial intelligence;Deep learning;ChatGPT;Large model;Multimodal
Liu Longqian, Email: mocdef.labiamtoh15651q.b
引用本文

刘陇黔,吴达文. 关注人工智能在斜视诊疗中的应用[J]. 中华实验眼科杂志,2024,42(12):1079-1083.

DOI:10.3760/cma.j.cn115989-20240611-00149

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
本文评分
5 [累计1个]
斜视是一种以双眼在同一方向上无法对准注视目标为特征的常见眼部疾病 [ 1 ],其主要发生在儿童群体,可导致患儿双眼视功能破坏、单眼抑制、视网膜对应异常等,同时可影响儿童心理、运动机能的发育。患儿常因诊治不及时,视功能受到严重损害 [ 2 ]。斜视也可以发生在任何年龄,其在视觉功能、外观、学习能力、工作机会、心理健康等方面对患者均有显著而长期的影响,已成为重要的公共卫生问题 [ 3 , 4 , 5 ]。斜视常起病隐匿,类型众多,许多斜视患者如能尽早诊断和干预,将获得更好的治愈机会。因此,针对斜视高危人群实施筛查并有效甄别斜视类型,在此基础上及早进行合理的干预,采用科学的方法对病情进展进行预测和监测,对改善患者的治疗效果,提高眼科保健服务的水平都具有极为重要的现实意义。
目前,斜视筛查、诊断主要由斜视与小儿眼科医师通过角膜映光法和遮盖试验等测试手动进行,非常依赖患者的配合和医师的技能及经验。然而,目前我国小儿眼科医师仅数千人 [ 6 ],人力资源缺口巨大,存在着漏诊、误诊风险。近年来,人工智能(artificial intelligence,AI)技术成果井喷式涌现,在眼科领域的研究几乎涵盖了所有常见疾病,包括干眼、圆锥角膜、白内障等眼前节疾病 [ 7 , 8 , 9 , 10 ],以及眼底病和视神经相关疾病等眼后节疾病 [ 11 , 12 , 13 ]。值得关注的是,AI用于斜视诊疗及预后预测的研究近年来也正在发展。未来,结合大模型技术和多模态数据的智能诊疗平台的建设将提升斜视的管理和眼保健水平,有助于实现斜视的个性化精准诊疗。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Graham PA . Epidemiology of strabismus[J]. Br J Ophthalmol 197458(3)∶224231. DOI: 10.1136/bjo.58.3.224 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Cotter SA Tarczy-Hornoch K Song E et al. Fixation preference and visual acuity testing in a population-based cohort of preschool children with amblyopia risk factors[J]. Ophthalmology 2009116(1)∶145153. DOI: 10.1016/j.ophtha.2008.08.031 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Mojon-Azzi SM Mojon DS . Strabismus and employment:the opinion of headhunters[J]. Acta Ophthalmol 200987(7)∶784788. DOI: 10.1111/j.1755-3768.2008.01352.x .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Durnian JM Noonan CP Marsh IB . The psychosocial effects of adult strabismus:a review[J]. Br J Ophthalmol 201195(4)∶450453. DOI: 10.1136/bjo.2010.188425 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Uretmen O Egrilmez S Kose S et al. Negative social bias against children with strabismus[J]. Acta Ophthalmol Scand 200381(2)∶138142. DOI: 10.1034/j.1600-0420.2003.00024.x .
返回引文位置Google Scholar
百度学术
万方数据
[6]
王宇濛陈伟伟付晶人工智能技术在小儿眼科临床诊疗应用中的研究进展[J]. 中国斜视与小儿眼科杂志 202230(4)∶4346. DOI: 10.3969/J.ISSN.1005-328X.2022.04.014 .
返回引文位置Google Scholar
百度学术
万方数据
Wang YM Chen WW Fu J Research progress of artificial intelligence technology in clinical diagnosis and treatment of pediatric ophthalmology[J]. Chin J Strab Pediat Ophthalmol 202230(4)∶4346. DOI: 10.3969/J.ISSN.1005-328X.2022.04.014 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[7]
韩亚波易全勇人工智能在睑板腺功能障碍相关干眼中的应用现状及进展[J]. 中华实验眼科杂志 202442(2)∶187191. DOI: 10.3760/cma.j.cn115989-20220821-00385 .
返回引文位置Google Scholar
百度学术
万方数据
Han YB Yi QY . Application status and progress of artificial intelligence in dry eye associated with meibomian gland dysfunction[J]. Chin J Exp Ophthalmol 202442(2)∶187191. DOI: 10.3760/cma.j.cn115989-20220821-00385 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[8]
Ambrósio R Jr Salomão MQ Barros L et al. Multimodal diagnostics for keratoconus and ectatic corneal diseases:a paradigm shift[J/OL]. Eye Vis (Lond) 202310(1)∶45[2024-06-05]. https://pubmed.ncbi.nlm.nih.gov/37919821/. DOI: 10.1186/s40662-023-00363-0 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Zhou Y Li G Li H Automatic cataract classification using deep neural network with discrete state transition[J]. IEEE Trans Med Imaging 202039(2)∶436446. DOI: 10.1109/TMI.2019.2928229 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
周奕文杨燕宁人工智能技术在眼前节疾病及近视诊疗中的应用[J]. 中华实验眼科杂志 202139(9)∶821826. DOI: 10.3760/cma.j.cn115989-20201014-00692 .
返回引文位置Google Scholar
百度学术
万方数据
Zhou YW Yang YN . Application of artificial intelligence technologies in ocular anterior segment diseases diagnosis and myopia management[J]. Chin J Exp Ophthalmol 202139(9)∶821826. DOI: 10.3760/cma.j.cn115989-20201014-00692 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[11]
董秀清杜绍林刘华秀人工智能在社区糖尿病视网膜病变诊断及转诊中的应用[J]. 中华实验眼科杂志 202240(12)∶11581163. DOI: 10.3760/cma.j.cn115989-20220316-00108 .
返回引文位置Google Scholar
百度学术
万方数据
Dong XQ Du SL Liu HX et al. Application of artificial intelligence for community-based diabetic retinopathy detection and referral[J]. Chin J Exp Ophthalmol 202240(12)∶11581163. DOI: 10.3760/cma.j.cn115989-20220316-00108 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[12]
马婧一李元媛原慧萍人工智能在青光眼图像诊断中的应用[J]. 中华实验眼科杂志 202038(5)∶438441. DOI: 10.3760/cma.j.cn115989-20190122-00026 .
返回引文位置Google Scholar
百度学术
万方数据
Ma JY Li YY Yuan HP . Application of artificial intelligence in the diagnostic imaging of glaucoma[J]. Chin J Exp Ophthalmol 202038(5)∶438441. DOI: 10.3760/cma.j.cn115989-20190122-00026 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[13]
Dong L He W Zhang R et al. Artificial intelligence for screening of multiple retinal and optic nerve diseases[J/OL]. JAMA Netw Open 20225(5)∶e229960[2024-06-05]. https://pubmed.ncbi.nlm.nih.gov/35503220/. DOI: 10.1001/jamanetworkopen.2022.9960 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Chen W Li R Yu Q et al. Early detection of visual impairment in young children using a smartphone-based deep learning system[J]. Nat Med 202329(2)∶493503. DOI: 10.1038/s41591-022-02180-9 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Wu D Li Y Zhang H et al. An artificial intelligence platform for the screening and managing of strabismus[J]. Eye (Lond) 202438(16)∶31013107. DOI: 10.1038/s41433-024-03228-5 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Wang C Bai Y Tsang A et al. Deep learning model for static ocular torsion detection using synthetically generated fundus images[J/OL]. Transl Vis Sci Technol 202312(1)∶17[2024-06-05]. https://pubmed.ncbi.nlm.nih.gov/36630147/. DOI: 10.1167/tvst.12.1.17 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Almeida JD Silva AC Teixeira JA et al. Surgical planning for horizontal strabismus using Support Vector Regression[J]. Comput Biol Med 201563178186. DOI: 10.1016/j.compbiomed.2015.05.025 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Leite F Almeida J Cruz L et al. Surgical planning of horizontal strabismus using multiple output regression tree[J/OL]. Comput Biol Med 2021134104493[2024-06-05]. https://pubmed.ncbi.nlm.nih.gov/34119920/. DOI: 10.1016/j.compbiomed.2021.104493 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Lou L Huang X Sun Y et al. Automated photographic analysis of inferior oblique overaction based on deep learning[J]. Quant Imaging Med Surg 202313(1)∶329338. DOI: 10.21037/qims-22-467 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Liu Y Liu C Zhang W et al. Model of a support vector machine to assess the functional cure for surgery of intermittent exotropia[J/OL]. Sci Rep 20199(1)∶8321[2024-06-06]. https://pubmed.ncbi.nlm.nih.gov/31171816/. DOI: 10.1038/s41598-019-38969-x .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Smola A Schlkopf B A tutorial on support vector regression[J]. Stat Comput 200414(3)∶199222. DOI: 10.1023/B:STCO.0000035301.49549.88 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Borchani H Varando G Bielza C et al. A survey on multi-output regression[J]. Wiley Wiley Interdiscip Rev-Data Mining Knowl Discov 20155(5)∶216233. DOI: 10.1002/widm.1157 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Yue BX Fu JW Liang J Residual recurrent neural networks for learning sequential representations[J/OL]. Information (Switzerland) 20189(3)∶56[2024-06-06]. https://www.mdpi.com/2078-2489/9/3/56. DOI: 10.3390/info9030056 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
刘陇黔吴达文人工智能在眼病筛查和诊断应用中的挑战与展望[J]. 中华眼科杂志 202460(6)∶484489. DOI: 10.3760/cma.j.cn112142-20231111-00226 .
返回引文位置Google Scholar
百度学术
万方数据
Liu LQ Wu DW . Challenges and prospects in the application of artificial intelligence for ocular disease screening and diagnosis[J]. Chin J Ophthalmol 202460(6)∶484489. DOI: 10.3760/cma.j.cn112142-20231111-00226 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[25]
Hribar MR Huang AE Goldstein IH et al. Data-driven scheduling for improving patient efficiency in ophthalmology clinics[J]. Ophthalmology 2019126(3)∶347354. DOI: 10.1016/j.ophtha.2018.10.009 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Betzler BK Chen H Cheng CY et al. Large language models and their impact in ophthalmology[J/OL]. Lancet Digit Health 20235(12)∶e917e924[2024-06-06]. https://pubmed.ncbi.nlm.nih.gov/38000875/. DOI: 10.1016/S2589-7500(23)00201-7 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Bycroft C Freeman C Petkova D et al. The UK Biobank resource with deep phenotyping and genomic data[J]. Nature 2018562(7726)∶203209. DOI: 10.1038/s41586-018-0579-z .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Saenz A Chen E Marklund H et al. The MAIDA initiative:establishing a framework for global medical-imaging data sharing[J/OL]. Lancet Digit Health 20246(1)∶e6e8[2024-06-07]. https://pubmed.ncbi.nlm.nih.gov/37977999/. DOI: 10.1016/S2589-7500(23)00222-4 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Zhou Y Chia MA Wagner SK et al. A foundation model for generalizable disease detectio n from retinal images [J]. Nature 2023622(7981)∶156163. DOI: 10.1038/s41586-023-06555-x .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Li Y El Habib Daho M Conze PH et al. A review of deep learning-based information fusion techniques for multimodal medical image classification[J/OL]. Comput Biol Med 2024177108635[2024-06-07]. https://pubmed.ncbi.nlm.nih.gov/38796881/. DOI: 10.1016/j.compbiomed.2024.108635 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Stahlschmidt SR Ulfenborg B Synnergren J Multimodal deep learning for biomedical data fusion:a review[J/OL]. Brief Bioinform 202223(2)∶bbab569[2024-06-07]. https://pubmed.ncbi.nlm.nih.gov/35089332/. DOI: 10.1093/bib/bbab569 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Nagasawa T Tabuchi H Masumoto H et al. Accuracy of diabetic retinopathy staging with a deep convolutional neural network using ultra-wide-field fundus ophthalmoscopy and optical coherence tomography angiography[J/OL]. J Ophthalmol 202120216651175[2024-06-07]. https://pubmed.ncbi.nlm.nih.gov/33884202/. DOI: 10.1155/2021/6651175 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Baxter SL Marks C Kuo TT et al. Machine learning-based predictive modeling of surgical intervention in glaucoma using systemic data from electronic health records[J]. Am J Ophthalmol 20192083040. DOI: 10.1016/j.ajo.2019.07.005 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Saleh E Błaszczyński J Moreno A et al. Learning ensemble classifiers for diabetic retinopathy assessment[J]. Artif Intell Med 2018855063. DOI: 10.1016/j.artmed.2017.09.006 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Fraccaro P Nicolo M Bonetto M et al. Combining macula clinical signs and patient characteristics for age-related macular degeneration diagnosis:a machine learning approach[J/OL]. BMC Ophthalmol 20151510[2024-06-08]. https://pubmed.ncbi.nlm.nih.gov/25623 470/ . DOI: 10.1186/1471-2415-15-10 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Foo LL Lim G Lanca C et al. Deep learning system to predict the 5-year risk of high myopia using fundus imaging in children[J/OL]. NPJ Digit Med 20236(1)∶10[2024-06-08]. https://pubmed.ncbi.nlm.nih.gov/36702878/. DOI: 10.1038/s41746-023-00752-8 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
刘陇黔,Email: mocdef.labiamtoh15651q.b
B
所有作者均声明不存在利益冲突
C
四川大学华西医院学科卓越发展"1·3·5工程"人工智能项目 (ZYAI24033)
方谦逊·唐泽媛眼科临床医学公益计划 (0040206107039)
国家自然科学基金 (82070996)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号