临床研究
ENGLISH ABSTRACT
基于多路径网络的多病种精准视网膜血管网络分割方法的建立及应用
张金泽
李嘉雄
王耿媛
袁进
肖鹏
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20240731-00215
Development and application of an accurate retinal vascular network segmentation method for multiple diseases based on a multi-path network
Zhang Jinze
Li Jiaxiong
Wang Gengyuan
Yuan Jin
Xiao Peng
Authors Info & Affiliations
Zhang Jinze
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
Li Jiaxiong
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
Wang Gengyuan
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
Yuan Jin
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
Xiao Peng
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
·
DOI: 10.3760/cma.j.cn115989-20240731-00215
131
31
0
0
0
0
PDF下载
APP内阅读
摘要

目的建立一种适用于眼底多病种的精准视网膜血管网络分割方法,探讨不同类型眼底疾病的视网膜血管形态参数变化规律。

方法采用回顾性研究方法,收集2020年1月至2023年12月在中山大学中山眼科中心就诊的眼底病患者829例及健康受试者146名的彩色眼底照相数据。将多路径分割网络进行微调,输入眼底图像血管分割公开数据集中糖尿病视网膜病变(DR)、青光眼以及年龄相关性黄斑变性(AMD)患者及健康成人的彩色眼底照相数据进行训练,直至模型loss值不再下降,最终得到完成训练的多病种视网膜血管分割模型。应用本课题组之前开发的视网膜血管形态特征分析方法,对受试者以黄斑为中心的彩色眼底图像进行分析,提取视网膜血管分型维数(D f)、血管面积比(VAR)、平均血管直径(D m)和扭曲度(τ)等形态特征参数,比较不同疾病组的视网膜血管形态特征参数。

结果构建的多病种彩色眼底照相血管分割模型在测试集上的准确率为0.987,受试者工作特征曲线下面积为0.995。校正年龄和性别后,不同组间D f校正、VAR 校正、D m校正和τ总体比较差异均有统计学意义( F=27.87、47.60、26.48、4.63,均 P<0.001),其中AMD组、DR组、糖尿病性黄斑水肿(DME)组、视网膜色素变性(RP)组、视网膜分支静脉阻塞(BRVO)组和视网膜中央静脉阻塞(CRVO)组D f校正较健康对照组显著下降,差异均有统计学意义(均 P<0.05);除视神经炎组和中心性浆液性脉络膜视网膜病变组外其他所有疾病组VAR 校正较健康对照组显著下降,差异均有统计学意义(均 P<0.05);DME组、青光眼组、RP组、BRVO组和CRVO组D m校正较健康对照组显著下降,差异均有统计学意义(均 P<0.05)。τ不受年龄和性别影响,无需校正。DR组和DME组τ较健康对照组显著上升,差异均有统计学意义(均 P<0.05)。

结论成功构建了适用于眼底多病种的视网膜血管精准分割方法,该方法在视网膜多病种彩色眼底照相视网膜血管分割中均显示出高准确率。不同眼底疾病的视网膜血管形态特征存在显著差异。

视网膜疾病;视网膜血管;人工智能;彩色眼底照相;形态学参数
ABSTRACT

ObjectiveTo establish an accurate retinal vascular network segmentation method for multiple fundus diseases, and to investigate the changing patterns of retinal vascular morphological parameters in these diseases.

MethodsA retrospective study was conducted.Color fundus photography data of 829 patients with fundus diseases and 146 healthy adults were collected at Zhongshan Ophthalmic Center, Sun Yat-sen University from January 2020 to December 2023.The multi-path segmentation network was fine-tuned, and the color fundus photography data of diabetic retinopathy (DR), glaucoma and age-related macular degeneration (AMD) patients and healthy adults in the fundus image vessel segmentation public dataset were input for training until the loss value of the model stopped decreasing, and finally the trained multi-disease retinal vascular segmentation model was obtained.The retinal blood vessel morphological characteristics analysis method previously developed by our research group was used to analyze the subjects' color fundus images centered on the macula, the retinal blood vessel fractal dimension (D f), vascular area ratio (VAR), mean diameter (D m), tortuosity (τ) and other morphological characteristics parameters were extracted and compared among various disease groups.This study adhered to the Declaration of Helsinki.The study protocol was approved by the Ethics Committee of Zhongshan Ophthalmic Center, Sun Yat-sen University (No.2023KYPJ344).Written informed consent was obtained from each subject.

ResultsThe accuracy of the multi-disease color fundus photography vessel segmentation model on the test set was 0.987, and the area under the receiver operating characteristic curve was 0.995.After adjustment for age and sex, there were statistically significant differences in adjusted D f, adjusted VAR, adjusted D m and τ among different groups ( F=27.87, 47.60, 26.48, 4.63; all at P<0.001).Adjusted D f in AMD group, DR group, diabetic macular edema (DME) group, retinitis pigmentosa (RP) group, branch retinal vein occlusion (BRVO) group and central retinal vein occlusion (CRVO) group was significantly decreased than in normal control group, and the differences were statistically significant (all at P<0.05).Adjusted VAR in all disease groups except optic neuritis group and central serous chorioretinopathy group was significantly decreased compared with normal control group, and the differences were statistically significant (all at P<0.05).The adjusted D m in DME, glaucoma, RP, BRVO and CRVO groups was significantly decreased than that in normal control group, and the differences were statistically significant (all at P<0.05).τ was not affected by age or sex and did not require adjustment.τ in DR group and DME group was significantly increased compared with normal control group, and the differences were statistically significant (both at P<0.05).

ConclusionsAn accurate retinal blood vessel segmentation method for various fundus diseases was successfully constructed.This method shows high accuracy in retinal blood vessel segmentation in color fundus photographs of various retinal diseases.There are significant differences in the morphological characteristics of retinal blood vessels among different retinal diseases.

Retinal diseases;Retinal vessels;Artificial intelligence;Color fundus photography;Morphological parameters
Yuan Jin, Email: mocdef.6ab21aenrocnijnauy;
Xiao Peng, Email: mocdef.labiamtohsiddagnepoaix
引用本文

张金泽,李嘉雄,王耿媛,等. 基于多路径网络的多病种精准视网膜血管网络分割方法的建立及应用[J]. 中华实验眼科杂志,2024,42(12):1120-1126.

DOI:10.3760/cma.j.cn115989-20240731-00215

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
视网膜是人体重要的视觉感受器,其血管网络的完整性和正常功能对维持视力至关重要 [ 1 ]。大部分眼底疾病,如糖尿病视网膜病变(diabetic retinopathy,DR)、年龄相关性黄斑变性(age-related macular degeneration,AMD),甚至心血管疾病等都会导致视网膜血管网络出现异常变化,从而引发视力损害 [ 2 , 3 , 4 ]。及时准确检测和诊断视网膜血管网络的异常变化对于及早发现和治疗相关的眼部疾病具有重要意义。基于眼底图像进行视网膜血管网络分割,能够提取出丰富的定量指标,为眼底病变的诊断和监测提供客观依据 [ 5 , 6 , 7 ]。然而现有算法普遍存在鲁棒性弱的局限性,难以实现复杂临床场景下的多病种彩色眼底照相精准视网膜血管分割。
目前用于视网膜血管分割训练的常用数据集,如DRIVE、STARE和CHASE_DB1等仅包含了有限疾病分类的视网膜血管数据 [ 8 , 9 , 10 ],与真实临床场景采集彩色眼底照相数据存在显著差异。Jin等 [ 11 ]为了解决传统视网膜血管数据集的局限性,收集并发布了1个包含正常和DR、青光眼、AMD眼底疾病数据的眼底图像血管分割(fundus image vessel segmentation,FIVES)数据集,是目前最大的视网膜血管分割数据集,对于推动视网膜血管分割算法的发展具有重要意义。
在众多自动化视网膜分割方法中,以U-Net为代表的卷积神经网络(convolutional neural networks,CNN)方法应用最为广泛 [ 12 ]。多路径Ladder-Net是一种基于U-Net架构的深度学习模型,具有编码-解码的双向信息流动机制,能够更好地融合低层次的细节信息和高层次的语义信息,在图像分割任务中表现出色 [ 13 ]。相比于传统的U-Net,Ladder-Net在保留局部特征的同时,也能够更好地捕捉全局语义信息,从而提高了分割的精度和鲁棒性。基于多路径分割方法并结合FIVES多病种彩色眼底照相数据,有望开发一种适用于多病种的精准视网膜血管网络分割方法。
本研究拟采用FIVES数据集结合多路径Ladder-Net方法,开发一种适用于多病种的精准视网膜血管网络分割方法,并将其应用于不同类型眼底疾病的诊断与监测,为眼底疾病的早期诊断和疾病监测提供有力的影像学支撑,促进精准医疗的发展。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
<x>O</x> <x>'</x> <x>Leary</x> F Campbell M The blood-retina barrier in health and disease[J]. FEBS J 2023290(4)∶878891. DOI: 10.1111/febs.16330 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Lim SW Cheung N Wang JJ et al. Retinal vascular fractal dimension and risk of early diabetic retinopathy:a prospective study of children and adolescents with type 1 diabetes[J]. Diabetes Care 200932(11)∶20812083. DOI: 10.2337/dc09-0719 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Wong TY Klein R Klein BE et al. Retinal microvascular abnormalities and their relationship with hypertension,cardiovascular disease,and mortality[J]. Surv Ophthalmol 200146(1)∶5980. DOI: 10.1016/s0039-6257(01)00234-x .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Geirsdottir A Hardarson SH Olafsdottir OB et al. Retinal oxygen metabolism in exudative age-related macular degeneration[J]. Acta Ophthalmol 201492(1)∶2733. DOI: 10.1111/aos.12294 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Shi XH Dong L Zhang RH et al. Relationships between quantitative retinal microvascular characteristics and cognitive function based on automated artificial intelligence measurements[J/OL]. Front Cell Dev Biol 2023111174984[2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/37416799/. DOI: 10.3389/fcell.2023.1174984 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
He S Bulloch G Zhang L et al. Comparing common retinal vessel caliber measurement software with an automatic deep learning system[J]. Curr Eye Res 202348(9)∶843849. DOI: 10.1080/02713683.2023.2212881 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Shi D Lin Z Wang W et al. A deep learning system for fully automated retinal vessel measurement in high throughput image analysis[J/OL]. Front Cardiovasc Med 20229823436[2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/35391847/. DOI: 10.3389/fcvm.2022.823436 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Staal J Abràmoff MD Niemeijer M et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Trans Med Imaging 200423(4)∶501509. DOI: 10.1109/TMI.2004.825627 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Kaba D Wang C Li Y et a l . Retinal blood vessels extraction using probabilistic modelling[J/OL]. Health Inf Sci Syst 201422[2024-07-10]. https://pubmed.ncbi.nlm.nih.gov/25825666/. DOI: 10.1186/2047-2501-2-2 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Fraz MM Remagnino P Hoppe A et al. An ensemble classification-based approach applied to retinal blood vessel segmentation[J]. IEEE Trans Biomed Eng 201259(9)∶25382548. DOI: 10.1109/TBME.2012.2205687 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Jin K Huang X Zhou J et al. FIVES:a fundus image dataset for artificial intelligence based vessel segmentation[J/OL]. Sci Data 20229(1)∶475[2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/35927290/. DOI: 10.1038/s41597-022-01564-3 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Ronneberger O Fischer P Brox T U-Net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer International Publishing 2015234241. DOI: 10.1007/978-3-319-24574-4-28 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Zhuang J LadderNet :multi-path networks based on U-Net for medical image segmentation[J/OL]. 2018[2024-07-11]. https://arxiv.org/pdf/1810.07810. DOI: 10.48550/arXiv.1810.07810 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Wang G Li M Yun Z et al. A novel multiple subdivision-based algorithm for quantitative assessment of retinal vascular tortuosity[J]. Exp Biol Med (Maywood) 2021246(20)∶22222229. DOI: 10.1177/15353702211032898 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Feng Z Wang G Xia H et al. Macular vascular geometry changes with sex and age in healthy subjects:a fundus photography study[J/OL]. Front Med (Lausanne) 20218778346[2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/34977079/. DOI: 10.3389/fmed.2021.778346 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Pappelis K Jansonius NM . Retinal vessel caliber measurement bias in fundus images in the presence of the central light reflex[J/OL]. Transl Vis Sci Technol 202312(7)∶16[2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/37450282/. DOI: 10.1167/tvst.12.7.16 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Mautuit T Semecas R Hogg S et al. Comparing measurements of vascular diameter using adaptative optics imaging and conventional fundus imaging[J/OL]. Diagnostics (Basel) 202212(3)∶705[2024-07-12]. https://pubmed.ncbi.nlm.nih.gov/35328258/. DOI: 10.3390/diagnostics12030705 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Sun G Liu X Yu X Multi-path cascaded U-net for vessel segmentation from fundus fluorescein angiography sequential images[J/OL]. Comput Methods Programs Biomed 2021211106422[2024-07-12]. https://pubmed.ncbi.nlm.nih.gov/34598080/. DOI: 10.1016/j.cmpb.2021.106422 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Li M Wang G Xia H et al. Retinal vascular geometry detection as a biomarker in diabetes mellitus[J]. Eur J Ophthalmol 202232(3)∶17101719. DOI: 10.1177/11206721211033488 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Wang G Huang Y Ma K et al. Automatic vessel crossing and bifurcation detection based on multi-attention network vessel segmentation and directed graph search[J/OL]. Comput Biol Med 2023155106647[2024-07-12]. https://pubmed.ncbi.nlm.nih.gov/36848799/. DOI: 10.1016/j.compbiomed.2023.106647 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Sasongko MB Wong TY Nguyen TT et al. Retinal vascular tortuosity in persons with diabetes and diabetic retinopathy[J]. Diabetologia 201154(9)∶24092416. DOI: 10.1007/s00125-011-2200-y .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Klein R Lee KE Danforth L et al. The relationship of retinal vessel geometric characteristics to the incidence and progression of diabetic retinopathy[J]. Ophthalmology 2018125(11)∶17841792. DOI: 10.1016/j.ophtha.2018.04.023 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Lim LS Chee ML Cheung CY et al. Retinal vessel geometry and the incidence and progression of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci 201758(6)∶BIO200BIO205. DOI: 10.1167/iovs.17-21699 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
史绪晗董力邵蕾基于人工智能自动分析技术的视网膜血管形态参数测量及特征分析[J]. 中华实验眼科杂志 202442(1)∶3846. DOI: 10.3760/cma.j.cn115989-20220715-00326 .
返回引文位置Google Scholar
百度学术
万方数据
Shi XH Dong L Shao L et al. Measurement and characterization of retinal vascular morphology parameters based on artificial intelligence automated analysis technology[J]. Chin J Exp Ophthalmol 202442(1)∶3846. DOI: 10.3760/cma.j.cn115989-20220715-00326 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
备注信息
A
袁进: mocdef.6ab21aenrocnijnauy
B
肖鹏: mocdef.labiamtohsiddagnepoaix
C

张金泽:酝酿和设计试验、实施研究、采集数据、分析/解释数据、统计分析、起草文章;李嘉雄、王耿媛:实施研究、采集数据、统计分析;袁进、肖鹏:酝酿和设计试验、指导试验、对文章的知识性内容作批评性审阅及定稿

D
所有作者均声明不存在利益冲突
E
国家自然科学基金重点项目 (82230033)
国家自然科学基金面上项目 (82271133)
广东省自然科学基金面上项目 (2022A1515011486)
中山大学高校基本科研业务费项目 (24ykqb009)
眼科学国家重点实验室基础研究基金
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号