临床研究
ENGLISH ABSTRACT
基于深度学习的原发性闭角型青光眼睫状体前位的自动评估
丛钰玉
蒋维艳
朱剑
郑碧清
杨燕宁
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20240328-00085
An automatic evaluation study for anterior located ciliary body of primary angle-closure glaucoma based on deep learning
Cong Yuyu
Jiang Weiyan
Zhu Jian
Zheng Biqing
Yang Yanning
Authors Info & Affiliations
Cong Yuyu
Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
Jiang Weiyan
Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
Zhu Jian
Aier Eye Hospital (Huangshi), Huangshi 435002, China
Zhu Jian is an on-the-job doctoral student at Renmin Hospital of Wuhan University
Zheng Biqing
School of Resources and Environmental Sciences of Wuhan University, Wuhan 430060, China
Yang Yanning
Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
·
DOI: 10.3760/cma.j.cn115989-20240328-00085
105
28
0
0
0
0
PDF下载
APP内阅读
摘要

目的探讨一种基于深度学习算法的原发性闭角型青光眼(PACG)睫状体前位自动评估的超声生物显微镜(UBM)图像分析系统的临床应用价值。

方法采用诊断试验研究方法,收集自2022年8月至2023年12月于武汉大学人民医院眼科中心进行UBM检查的PACG患者378例726眼的2 132张UBM图像,将数据集分为训练集1 599张图像和测试集533张图像,采用深度学习算法构建模型。选取于黄石爱尔眼科医院就诊的PACG患者69例101眼的334张UBM图像进行外部测试。另选取110张UBM图像作为独立数据集进行人机比赛,以比较睫状体前位评估系统与3名高年资眼科医师的准确度及速度。此外,选取8名低年资医师对独立于数据集的110张UBM图像分别在模型辅助前后进行评估,并对2次结果进行差异性分析以评估模型辅助效果。

结果本模型在内部测试集中对睫状体前位识别的准确率为93.43%,灵敏度为84.30%,特异度为97.78%。本模型在外部测试集中表现良好,准确率为92.81%。人机比赛结果显示,本模型识别的准确率与高年资眼科医师相近,并优于其中2名高年资眼科医师。3名高年资眼科医师平均总用时为726.73 s,模型分类总用时为58.30 s,高年资医师平均用时较长,约为模型分类的12.47倍。经模型辅助后,8名低年资医师诊断准确率为86.71%,明显高于辅助前的76.25%;评估总用时为(714.91±213.82)s,明显低于辅助前的(987.90±238.56)s,差异均有统计学意义( χ 2=-7.550, P<0.001; t=2.774, P<0.05)。

结论基于深度学习算法的UBM图像分析系统在PACG睫状体前位诊断中展现出较高的准确率,为低年资医师的UBM识图训练提供了有力支持。

人工智能;深度学习;超声生物显微镜;原发性闭角型青光眼;睫状体前位
ABSTRACT

ObjectiveTo explore the clinical application value of a deep learning algorithm-based ultrasound biomicroscopy (UBM) image analysis system for primary angles-closure glaucoma (PACG) anterior located ciliary body.

MethodsA diagnostic test study was conducted.A total of 2 132 UBM images from 726 eyes of 378 PACG patients who underwent UBM examination were collected at Renmin Hospital of Wuhan University from August 2022 to December 2023.The dataset was divided into a training set of 1 599 images and a test set of 533 images, and a deep learning algorithm was employed to construct a model.An additional 334 UBM images from 101 eyes of 69 PACG patients treated at Huangshi Aier Eye Hospital were selected to conduct external testing.A separate set of another 110 UBM images were selected for a human-machine competition to compare the accuracy and speed between anterior located ciliary body evaluation system and three senior ophthalmologists.Furthermore, eight junior ophthalmologists assessed the 110 UBM images independently without and with the assistance of the model, and the differences between the two evaluations were analyzed to assess the assisstance effect of the model.This study adhered to the Declaration of Helsinki.The study protocol was approved by the Ethics Committee of Renmin Hospital of Wuhan University (No.WDRY-2022-K109).

ResultsThe model achieved an accuracy of 93.43% for anterior located ciliary body identification in the internal test set, with a sensitivity of 84.30% and a specificity of 97.78%.The model also performed well on the external test set with an accuracy of 92.81%.In the human-machine competition, the model's accuracy was comparable to that of the senior ophthalmologists and outperformed two of the three senior ophthalmologists.The average total time of the three senior ophthalmologists was 726.73 seconds, approximately 12.47 times longer than the model's 58.30 seconds.With model assistance, the diagnostic accuracy of the eight junior ophthalmologists was 86.71%, which was significantly higher than 76.25% without model assistance ( χ 2=-7.550, P<0.001).And the image evaluation time was (714.91±213.82)seconds, which was significantly lower than (987.90±238.56)seconds without model assistance ( t=2.774, P<0.05).

ConclusionsThe UBM image analysis system based on a deep learning algorithm demonstrates high accuracy in diagnosing anterior located ciliary body in PACG and provides a strong support for the UBM image recognition training of junior ophthalmologists.

Artificial intelligence;Deep learning;Ultrasound biomicroscopy;Primary angle-closure glaucoma;Anterior located ciliary body
Yang Yanning, Email: mocdef.3ab61nyyhpo
引用本文

丛钰玉,蒋维艳,朱剑,等. 基于深度学习的原发性闭角型青光眼睫状体前位的自动评估[J]. 中华实验眼科杂志,2024,42(12):1134-1141.

DOI:10.3760/cma.j.cn115989-20240328-00085

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
青光眼是全球首位不可逆性致盲眼病 [ 1 ]。2040年全球将有约1.1亿青光眼患者,给人类视觉健康造成严重威胁 [ 2 ]。原发性青光眼根据前房角的开闭状态可以分为原发性闭角型青光眼(primary angle-closure glaucoma,PACG)和原发性开角型青光眼(primary open-angle glaucoma,POAG),PACG在亚洲人群中患病率最高 [ 3 , 4 ]。由于青光眼具有隐匿性和高致盲率的特点,对青光眼患者进行准确评估并实现精准诊疗显得尤为关键。PACG患者的房角关闭机制可以分为单纯瞳孔阻滞型、虹膜高褶型、睫状体前位型、晶状体位置异常型、脉络膜膨隆型 [ 5 ]。研究显示,不同房角关闭机制的PACG患者在接受相同治疗方式时,其疗效差异显著 [ 6 , 7 ]。例如房角关闭、眼压升高和有瞳孔阻滞因素的患者,可首选激光或周边虹膜切除术。睫状体前位型表现为有明显前位的睫状体,将周边虹膜顶推向房角,造成房角狭窄甚至关闭 [ 5 ]。睫状体前位型患者即使实施了周边虹膜切除术或使用了缩瞳剂,睫状体仍可能保持前位状态,使得周边虹膜继续顶向房角,导致房角保持狭窄或关闭状态。对于这类患者,氩激光周边虹膜成形术更为适用 [ 8 ]。因此,准确识别房角关闭类型,有助于医生为PACG患者制定个性化的治疗策略,实现个体化精准治疗目标。
房角镜检查被视为房角评估的金标准,但存在结果具有主观性、接触式操作引起患者不适、不适用于角膜上皮缺损等情况的患者、无法观察睫状体等局限性,在一定程度上限制了其在临床上的应用 [ 9 , 10 ]。在睫状体成像方面,超声生物显微镜(ultrasound biomicroscope,UBM)相较于其他眼科检查设备具有显著优势,可对睫状体结构进行定性及定量分析 [ 11 ]。然而,UBM图像复杂且解读需要深厚的专业知识,这使得许多基层医疗机构和低年资医师难以充分发挥其效用。此外,UBM图像解读存在高度主观性,不同医师在经验和知识背景上的差异也会导致对同一图像的解读结果存在出入。我国青光眼专业医师储备相对不足,医疗资源地域分布不均,基层医疗机构防治能力相对滞后 [ 12 ]。因此,对大量的UBM图像进行学习和训练,从而建立一个客观、准确的UBM图像识别模型十分必要。即使在缺少经验丰富眼科医师的情况下,基层医院的医师或低年资医师在人工智能模型的帮助下也能够对UBM图像进行初步解读,为患者提供更加及时、有效的医疗服务。
人工智能在眼科领域的应用发展迅速,包括应用于糖尿病视网膜病变、角膜炎的诊断等 [ 13 , 14 ]。最近,有研究报道了基于眼前节光学相干断层扫描(anterior chamber optical coherence tomography,AS-OCT)图像预测前房角关闭机制模型的开发 [ 15 , 16 ],然而对于前房角关闭机制中睫状体前位相关的人工智能模型研究尚缺乏。本团队在前期工作中已成功构建了一个基于深度卷积神经网络(deep convolutional neural networks,DCNN)和各种机器学习方法的人工智能模型 [ 17 ],该模型能够准确且高效地对UBM图像的前房角结构,包括虹膜、巩膜和睫状体区域进行自动识别分割;能够进行不依赖于人为标记的巩膜突全自动定位和前房角参数自动测量以及房角开闭状态的自动识别判断,但是并未完成对房角关闭机制的自动分类识别。本研究旨在开发能够识别睫状体前位的人工智能模型,并深入探讨此模型在低年资医师培训中的作用。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
GBD 2019 Blindness and Vision Impairment CollaboratorsVision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years,and prevalence of avoidable blindness in relation to VISION 2020:the Right to Sight:an analysis for the Global Burden of Disease Study[J/OL]. Lancet Glob Health 20219(2)∶e144e160[2024-03-10]. https://pubmed.ncbi.nlm.nih.gov/33275949/. DOI: 10.1016/S2214-109X(20)30489-7 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Tham YC Li X Wong TY et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040:a systematic review and meta-analysis[J]. Ophthalmology 2014121(11)∶20812090. DOI: 10.1016/j.ophtha.2014.05.013 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Chan EW Li X Tham YC et al. Glaucoma in Asia:regional prevalence variations and future projections[J]. Br J Ophthalmol 2016100(1)∶7885. DOI: 10.1136/bjophthalmol-2014-306102 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Zhang N Wang J Li Y et al. Prevalence of primary open angle glaucoma in the last 20 years:a meta-analysis and systematic review[J/OL]. Sci.Rep 202111(1)∶13762[2024-03-10]. https://pubmed.ncbi.nlm.nih.gov/34215769/. DOI: 10.3389/fmed.2020.624179 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
中华医学会眼科学分会青光眼学组中国原发性闭角型青光眼诊治方案专家共识(2019年)[J]. 中华眼科杂志 201955(5)∶325328. DOI: 10.3760/cma.j.issn.0412-4081.2019.05.002 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Tun TA Sawicki A Wilkos-Kuc A et al. Changes in anterior segment parameters after laser peripheral iridotomy in Caucasian eyes with different primary angle closure mechanisms[J]. J Glaucoma 202332(10)∶820825. DOI: 10.1097/IJG.0000000000002282 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Song MK Sung KR Shin JW . Glaucoma progression after lens extraction in primary angle-closure glaucoma according to angle-closure mechanism[J]. J Glaucoma 202231(4)∶261267. DOI: 10.1097/IJG.0000000000001992 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
王宁利欧阳洁周文炳中国人闭角型青光眼房角关闭机制多样性的研究[J]. 中华眼科杂志 200036(1)∶4651. DOI: 10.3760/j:issn:0412-4081.2000.01.013 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Shinoj VK Hong XJ Murukeshan VM et al. Progress in anterior chamber angle imaging for glaucoma risk prediction - a review on clinical equipment,practice and research[J]. Med Eng Phys 201638(12)∶13831391. DOI: 10.1016/j.medengphy.2016.09.014 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Riva I Micheletti E Oddone F et al. Anterior chamber angle assessment techniques:a review[J/OL]. J Clin Med 20209(12)∶3814[2024-03-10]. https://pubmed.ncbi.nlm.nih.gov/33255754/. DOI: 10.3390/jcm9123814 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Warjri GB Senthil S Imaging of the ciliary body:a major review[J]. Semin Ophthalmol 202237(6)∶711723. DOI: 10.1080/08820538.2022.2085515 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
卓业鸿吴建人工智能在青光眼防治中的应用潜力和方向[J]. 中华眼科杂志 202359(9)∶691695. DOI: 10.3760/cma.j.cn112142-20230519-00204 .
返回引文位置Google Scholar
百度学术
万方数据
Zhuo YH Wu J The application potential and direction of artificial intelligence in the prevention and treatment of glaucoma[J]. Chin J Ophthalmol 202359(9)∶691695. DOI: 10.3760/cma.j.cn112142-20230519-00204 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[13]
Liu Z Cao Y Li Y et al. Automatic diagnosis of fungal keratitis using data augmentation and image fusion with deep convolutional neural network[J/OL]. Comput Methods Programs Biomed 2020187105019[2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/31421868/. DOI: 10.1016/j.cmpb.2019.105019 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Bilal A Imran A Baig TI et al. Improved support vector machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification[J/OL]. PLoS One 202419(1)∶e0295951[2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/38165976/. DOI: 10.1371/journal.pone.0295951 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Zhang Y Dong Z Zhang Q et al. Detection of primary angleclosure suspect with different mechanisms of angle closure using multivariate prediction models[J/OL]. Acta Ophthalmol 202199(4)∶e576e586[2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/32996707/. DOI: 10.1111/aos.14634 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Wanichwecharungruang B Kaothanthong N Pattanapongpaiboon W et al. Deep learning for anterior segment optical coherence tomography to predict the presence of plateau iris[J/OL]. Transl Vis Sci Technol 202110(1)∶7[2024-03-12]. https://pubmed.ncbi.nlm.nih.gov/33505774/. DOI: 10.1167/tvst.10.1.7 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Jiang W Yan Y Cheng S et al. Deep learning-based model for automatic assessment of anterior angle chamber in ultrasound biomicroscopy[J]. Ultrasound Med Biol 202349(12)∶24972509. DOI: 10.1016/j.ultrasmedbio.2023.08.013 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
《眼科人工智能临床应用伦理专家共识(2023)》专家组中国医药教育协会数字影像与智能医疗分会中国医药教育协会智能医学专业委员会眼科人工智能临床应用伦理专家共识(2023)[J]. 中华实验眼科杂志 202341(1)∶17. DOI: 10.3760/cma.j.cn115989-20220905-00414 .
返回引文位置Google Scholar
百度学术
万方数据
Expert Workgroup of Expert consensus for ethics of clinical application of artificial intelligence in ophthalmology (2023)Digital Imaging and Intelligent Medicine Branch of China Medical Education AssociationIntelligent Medicine Special Committee of China Medical Education Association. Expert consensus for ethics of clinical application of artificial intelligence in ophthalmology (2023)[J]. Chin J Exp Ophthalmol 202341(1)∶17. DOI: 10.3760/cma.j.cn115989-20220905-00414 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[19]
Burton MJ Ramke J Marques AP et al. The Lancet Global Health Commission on Global Eye Health:vision beyond 2020[J/OL]. Lancet Glob Health 20219(4)∶e489e551[2024-03-12]. https://pubmed.ncbi.nlm.nih.gov/33607016/. DOI: 10.1016/S2214-109X(20)30488-5 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
王宁利刘旭阳我国青光眼事业70年之变迁与发展[J]. 中华眼科杂志 202056(1)∶38. DOI: 10.3760/cma.j.issn.0412-4081.2020.01.002 .
返回引文位置Google Scholar
百度学术
万方数据
Wang NL Liu XY . Changes and development of glaucoma in China in the past 70 years[J]. Chin J Ophthalmol 202056(1)∶38. DOI: 10.3760/cma.j.issn.0412-4081.2020.01.002 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[21]
Song P Wang J Bucan K et al. National and subnational prevalence and burden of glaucoma in China:a systematic analysis[J/OL]. J Glob Health 20177(2)∶020705[2024-03-12]. https://pubmed.ncbi.nlm.nih.gov/29302324/. DOI: 10.7189/jogh.07.020705 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
姚宝群高褶虹膜[J]. 国际眼科杂志 202323(2)∶217221. DOI: 10.3980/j.issn.1672-5123.2023.2.07 .
返回引文位置Google Scholar
百度学术
万方数据
Yao BQ . Plateau iris[J]. Int Eye Sci 202323(2)∶217221. DOI: 10.3980/j.issn.1672-5123.2023.2.07 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[23]
He N Wu L Qi M et al. Comparison of ciliary body anatomy between American Caucasians and Ethnic Chinese using ultrasound biomicroscopy[J]. Curr Eye Res 201641(4)∶485491. DOI: 10.3109/02713683.2015.1024869 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
杨燕宁,Email: mocdef.3ab61nyyhpo
B

丛钰玉:设计试验、实施研究、采集数据、分析/解释数据、文章撰写;蒋维艳:设计试验、实施研究、采集数据、分析数据;朱剑:提供外部测试集数据;郑碧清:参与人工智能模型搭建及测试;杨燕宁:设计试验、文章审阅及定稿

C
所有作者均声明不存在利益冲突
D
湖北省重点研发计划 (2020BCB055)
武汉大学人民医院交叉创新人才项目 (JCRCZN-2022-007)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号