临床研究
ENGLISH ABSTRACT
基于多模态数据的深度学习在青光眼诊断和严重程度分级中的应用
钱朝旭
周凌翔
冯雪丽
陈曦
杨文艳
易三莉
钟华
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20240104-00005
Application of deep learning with multimodal data in glaucoma diagnosis and severity grading
Qian Chaoxu
Zhou Lingxiang
Feng Xueli
Chen Xi
Yang Wenyan
Yi Sanli
Zhong Hua
Authors Info & Affiliations
Qian Chaoxu
Shanghai Aier Eye Hospital, Shanghai Aier Eye Institute, Shanghai 200030, China
Zhou Lingxiang
School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China
Feng Xueli
School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China
Chen Xi
Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
Yang Wenyan
Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
Yi Sanli
School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China
Zhong Hua
Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
·
DOI: 10.3760/cma.j.cn115989-20240104-00005
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

目的基于多模态数据开发能诊断青光眼并识别严重程度的深度学习模型。

方法采用诊断试验研究方法,于2023年6—12月在昆明医科大学第一附属医院眼科收集正常人群86人145眼和不同严重程度原发性开角型青光眼患者314例507眼的彩色眼底照相和视野检查结果,并根据视野的平均缺损值将青光眼分为早期154眼、中期113眼和晚期240眼。分别采用DenseNet 121、ResNet 50和VGG 19卷积神经网络(CNN)模型建立人工智能(AI)青光眼严重程度分级模型,评估单模态数据与多模态数据对于分类结果的影响,并确定适合多模态数据的CNN网络架构。

结果同时具有彩色眼底照相和视野检查结果者有652眼,按照4∶1的比率采用计算机取随机数法将图片分配到训练集和测试集。不同CNN模型建立的青光眼严重程度分级模型均具有较高的准确性,DenseNet 121整体有效性指标高于ResNet 50和VGG 19。在彩色眼底照相单模态AI模型、视野单模态AI模型、彩色眼底照相联合视野的多模态AI模型中,识别早期青光眼的受试者工作特征曲线下面积分别为0.87、0.93和0.95。

结论基于多模态数据能建立具有高准确性的青光眼诊断和严重程度分级工具。

青光眼;人工智能;多模态成像;彩色眼底照相;视野
ABSTRACT

ObjectiveTo develop a deep learning model based on multimodal data for glaucoma diagnosis and severity assessment.

MethodsA diagnostic test was conducted.A total of 145 normal eyes from 86 participants and 507 eyes with primary open-angle glaucoma from 314 participants were collected at the First Affiliated Hospital of Kunming Medical University from June to December in 2023.Fundus photographs and visual field data were obtained, and glaucoma eyes were divided into three groups based on the mean deviation value of the visual field, namely mild group (154 eyes), moderate group (113 eyes), and severe group (240 eyes).Three convolutional neural network (CNN) models, including DenseNet 121, ResNet 50 and VGG 19, were used to build an artificial intelligence (AI) model.The impact of single-modal and multimodal data on the classification results was evaluated, and the most appropriate CNN network architecture for multimodal data was identified.This study adhered to the Declaration of Helsinki.The study protocol was approved by the Ethics Committee of The First Affiliated Hospital of Kunming Medical University (No.2023L93).Written informed consent was obtained from each subject.

ResultsA total of 652 eyes had both fundus photographs and visual field test results.Images were randomly assigned to training and test datasets in a 4∶1 ratio by using computer random number method.AI models built with different CNN models showed high accuracy, with DenseNet 121 outperforming ResNet 50 and VGG 19 on various effectiveness measures.In the single-modal algorithm using fundus photographs, single-modal algorithm using visual field tests, and multimodal algorithm combining fundus photographs and visual field data, the area under the curve for early glaucoma detection was 0.87, 0.93 and 0.95, respectively.

ConclusionsThe use of multimodal data enables the development of a highly accurate tool for the glaucoma diagnosis and severity grading.

Glaucoma;Artificial intelligence;Multimodal imaging;Fundus photography;Visual field
Zhong Hua, Email: mocdef.3ab61tsilucohz
引用本文

钱朝旭,周凌翔,冯雪丽,等. 基于多模态数据的深度学习在青光眼诊断和严重程度分级中的应用[J]. 中华实验眼科杂志,2024,42(12):1149-1154.

DOI:10.3760/cma.j.cn115989-20240104-00005

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
青光眼是一类慢性、进行性视神经病变,具有特征性的视神经改变,并导致相应的视野缺损,是当前世界范围内不可逆盲的主要原因 [ 1 , 2 ]。据估计,到2040年,全球青光眼患者数量将增加到1.118亿 [ 2 ]。早期诊断和及时干预可以有效阻止或延缓视神经遭受不可逆性损伤,挽救患者的视功能 [ 3 ]。然而,即使在发达国家,仍然有高达50%的青光眼患者未被及时诊断 [ 4 , 5 ],这一比例在发展中国家甚至达到90% [ 6 ]。近年来,随着人工智能(artificial intelligence,AI)的快速发展,有望借助AI实现青光眼的早期发现和精确诊断 [ 7 ]。既往研究大多是基于单一的影像来开发AI,如彩色眼底照相的视盘改变、光学相干断层扫描(optical coherence tomography,OCT)的视网膜神经纤维层(retinal nerve fiber layer,RNFL)厚度和神经节细胞复合体厚度改变或视野缺损情况 [ 8 , 9 , 10 , 11 , 12 , 13 ]。然而,在真实世界中,青光眼的诊断,尤其是早期青光眼,不能仅依靠单一的结构或功能损伤,而需两者的结合。因此,需要开发基于结构和功能改变的多模态AI算法,更接近真实的临床实践。本研究尝试基于结构联合功能的多模态影像资料,建立能准确识别青光眼的AI模型,并评估其有效性。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Stein JD Khawaja AP Weizer JS . Glaucoma in adults-screening,diagnosis,and management:a review[J]. JAMA 2021325(2)∶164174. DOI: 10.1001/jama.2020.21899 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Tham YC Li X Wong TY et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040:a systematic review and meta-analysis[J]. Ophthalmology 2014121(11)∶20812090. DOI: 10.1016/j.ophtha.2014.05.013 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Weinreb RN Aung T Medeiros FA . The pathophysiology and treatment of glaucoma:a review[J]. JAMA 2014311(18)∶19011911. DOI: 10.1001/jama.2014.3192 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Chua J Baskaran M Ong PG et al. Prevalence,risk factors,and visual features of undiagnosed glaucoma:the Singapore epidemiology of eye diseases study[J]. JAMA Ophthalmol 2015133(8)∶938946. DOI: 10.1001/jamaophthalmol.2015.1478 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
McCann P Hogg R Wright DM et al. Glaucoma in the Northern Ireland Cohort for the Longitudinal Study of Ageing (NICOLA):cohort profile,prevalence,awareness and associations[J]. Br J Ophthalmol 2020104(11)∶14921499. DOI: 10.1136/bjophthalmol-2019-315330 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Sakata K Sakata LM Sakata VM et al. Prevalence of glaucoma in a South brazilian population:Projeto Glaucoma[J]. Invest Ophthalmol Vis Sci 200748(11)∶49744979. DOI: 10.1167/iovs.07-0342 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
张秀兰李飞人工智能和青光眼:机遇与挑战[J]. 中华实验眼科杂志 201836(4)∶245247. DOI: 10.3760/cma.j.issn.2095-0160.2018.04.002 .
返回引文位置Google Scholar
百度学术
万方数据
Zhang XL Li F Artificial intelligence and glaucoma:opportunities and challenges[J]. Chin J Exp Ophthalmol 201836(4)∶245247. DOI: 10.3760/cma.j.issn.2095-0160.2018.04.002 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[8]
Huang X Sun J Gupta K et al. Detecting glaucoma from multi-modal data using probabilistic deep learning[J/OL]. Front Med (Lausanne) 20229923096[2024-05-10]. https://pubmed.ncbi.nlm.nih.gov/36250081/. DOI: 10.3389/fmed.2022.923096 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
吴星黄烨霖叶子人工智能眼底分析技术对青光眼病灶的诊断价值研究[J]. 解放军医学院学报 202243(10)∶10141018. DOI: 10.3969/j.issn.2095-5227.2022.10.003 .
返回引文位置Google Scholar
百度学术
万方数据
Wu X Huang YL Ye Z et al. Value of artificial intelligent fundus analysis technology in diagnosis of glaucoma lesion[J]. Acad J Chin PLA Med Sch 202243(10)∶10141018. DOI: 10.3969/j.issn.2095-5227.2022.10.003 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[10]
Ran AR Cheung CY Wang X et al. Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography:a retrospective training and validation deep-learning analysis[J/OL]. Lancet Digit Health 20191(4)∶e172e182[2024-05-10]. https://pubmed.ncbi.nlm.nih.gov/33323187/. DOI: 10.1016/S2589-7500(19)30085-8 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Muhammad H Fuchs TJ De Cuir N et al. Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects[J]. J Glaucoma 201726(12)∶10861094. DOI: 10.1097/IJG.0000000000000765 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Li F Wang Z Qu G et al. Automatic differentiation of glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network[J/OL]. BMC Med Imaging 201818(1)∶35[2024-05-10]. https://pubmed.ncbi.nlm.nih.gov/30286740/. DOI: 10.1186/s12880-018-0273-5 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Xiong J Li F Song D et al. Multimodal machine learning using visual fields and peripapillary circular OCT scans in detection of glaucomatous optic neuropathy[J]. Ophthalmology 2022129(2)∶171180. DOI: 10.1016/j.ophtha.2021.07.032 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Foster PJ Buhrmann R Quigley HA et al. The definition and classification of glaucoma in prevalence surveys[J]. Br J Ophthalmol 200286(2)∶238242. DOI: 10.1136/bjo.86.2.238 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Mills RP Budenz DL Lee PP et al. Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease[J]. Am J Ophthalmol 2006141(1)∶2430. DOI: 10.1016/j.ajo.2005.07.044 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Yohannan J Wang J Brown J et al. Evidence-based criteria for assessment of visual field reliability[J]. Ophthalmology 2017124(11)∶16121620. DOI: 10.1016/j.ophtha.2017.04.035 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Yuan L Song J Fan Y MCNMF-Unet:a mixture Conv-MLP network with multi-scale features fusion Unet for medical image segmentation[J/OL]. PeerJ Comput Sci 202410e1798[2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/38259898/. DOI: 10.7717/peerj-cs.1798 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
万程周雪婷游齐靖基于ResNet50-OC模型的彩色眼底照片质量多分类方法效果评估[J]. 中华实验眼科杂志 202139(9)∶785790. DOI: 10.3760/cma.j.cn115989-20200107-00011 .
返回引文位置Google Scholar
百度学术
万方数据
Wan C Zhou XT You QJ et al. Evaluation of multi-classification method of color fundus photograph quality based on ResNet50-OC[J]. Chin J Exp Ophthalmol 202139(9)∶785790. DOI: 10.3760/cma.j.cn115989-20200107-00011 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[19]
Yi S Zhang G Qian C et al. A multimodal classification architecture for the severity diagnosis of glaucoma based on deep learning[J/OL]. Front Neurosci 202216939472[2024-05-20]. https://pubmed.ncbi.nlm.nih.gov/35844230/. DOI: 10.3389/fnins.2022.939472 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Bizios D Heijl A Bengtsson B Integration and fusion of standard automated perimetry and optical coherence tomography data for improved automated glaucoma diagnostics[J/OL]. BMC Ophthalmol 20111120[2024-05-10]. https://pubmed.ncbi.nlm.nih.gov/21816080/. DOI: 10.1186/1471-2415-11-20 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Chen Z Zheng X Shen H et al. Combination of enhanced depth imaging optical coherence tomography and fundus images for glaucoma screening[J/OL]. J Med Syst 201943(6)∶163[2024-05-11]. https://pubmed.ncbi.nlm.nih.gov/31044289/. DOI: 10.1007/s10916-019-1303-8 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Li Y Han Y Li Z et al. A transfer learning-based multimodal neural network combining metadata and multiple medical images for glaucoma type diagnosis[J/OL]. Sci Rep 202313(1)∶12076[2024-05-11]. https://pubmed.ncbi.nlm.nih.gov/37495578/. DOI: 10.1038/s41598-022-27045-6 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Liu J Xu Y Cheng J et al. Multiple modality fusion for glaucoma diagnosis[J]. 20144258. DOI: 10.1007/978-3-319-03005-0_2 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Ting D Pasquale LR Peng L et al. Artificial intelligence and deep learning in ophthalmology[J]. Br J Ophthalmol 2019103(2)∶167175. DOI: 10.1136/bjophthalmol-2018-313173 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Tatham AJ Weinreb RN Medeiros FA . Strategies for improving early detection of glaucoma:the combined structure-function index[J]. Clin Ophthalmol 20148611621. DOI: 10.2147/OPTH.S44586 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
钟华,Email: mocdef.3ab61tsilucohz
B

钱朝旭:设计试验、收集并分析数据、撰写文章;周凌翔、冯雪丽、陈曦、杨文艳:收集并分析数据、对文章知识性内容的修改;易三莉:对文章的知识性内容作批评性审阅;钟华:设计试验、对文章的知识性内容作批评性审阅及定稿

C
所有作者均声明不存在利益冲突
D
国家自然科学基金 (81960176)
湖南省自然科学基金 (2023JJ70013)
上海市徐汇区医学科研项目 (SHXH202317)
爱尔眼科医院集团科研基金 (AGK2306D03)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号