综述
ENGLISH ABSTRACT
基于角膜生物力学特性的早期圆锥角膜智能诊断研究进展
陈萱
王雁 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20230727-00047
Research progress in intelligent diagnosis of early keratoconus based on corneal biomechanical properties
Chen Xuan
Wang Yan
Authors Info & Affiliations
Chen Xuan
School of Medicine, Nankai University, Nankai Eye Institute, Nankai University, Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
Wang Yan
School of Medicine, Nankai University, Nankai Eye Institute, Nankai University, Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
·
DOI: 10.3760/cma.j.cn115989-20230727-00047
223
78
0
0
1
0
PDF下载
APP内阅读
摘要

角膜生物力学特性已被证明在维持角膜的正常结构、检测扩张性疾病的发生和发展、青光眼筛查、屈光手术的评估等方面均具有重要作用。人工智能作为一种重要的辅助工具,已被广泛应用于医学、生物学等领域。目前,圆锥角膜诊断标准不一,早期圆锥角膜的发现和诊断更为困难,对眼科医师,尤其是屈光医师的临床诊治提出了挑战。近年来,人工智能技术在圆锥角膜领域中的应用日益增多,取得了诸多进展,本文对近年来基于角膜生物力学特性智能诊断早期圆锥角膜的研究进展进行综述,主要包括基于眼反应分析仪诊断早期圆锥角膜、基于可视化角膜生物力学分析仪诊断早期圆锥角膜和基于角膜生物力学特性应用人工智能诊断早期圆锥角膜的研究进展等,旨在使临床医师深入了解角膜生物力学特性在提高早期圆锥角膜诊断效率等方面的潜在价值,以期辅助提高早期圆锥角膜的智能化诊疗水平。

生物力学;人工智能;圆锥角膜;诊断
ABSTRACT

Corneal biomechanical properties have been found to be important in maintaining normal corneal structure, detecting the development and progression of ectatic diseases, screening for glaucoma, and evaluating refractive surgery.Artificial intelligence, as an important tool, has been widely applied in fields such as medicine and biology.At present, there are different diagnostic criteria for keratoconus, and the early detection and diagnosis of keratoconus are more difficult, which poses challenges to the clinical diagnosis and treatment of ophthalmologists, especially refractive engineers.In recent years, the application of artificial intelligence technology in the field of keratoconus has increased, and many advances have been made.This article reviews recent studies on the intelligent diagnosis of early keratoconus based on corneal biomechanical properties, mainly including the diagnosis of early keratoconus based on ocular response analyzer, the diagnosis of early keratoconus based on corneal visualization Scheimpflug technology, and the research progress of applying artificial intelligence to diagnose early keratoconus based on corneal biomechanical properties.The aim is to enable clinical doctors to have a deep understanding of the potential value of corneal biomechanical characteristics in improving the efficiency of early keratoconus diagnosis, and to help improve the level of intelligent diagnosis and treatment of early keratoconus.

Biomechanics;Artificial intelligence;Keratoconus;Diagnosis
Wang Yan, Email: mocdef.aabnis.piv3417naygnaw
引用本文

陈萱,王雁. 基于角膜生物力学特性的早期圆锥角膜智能诊断研究进展[J]. 中华实验眼科杂志,2024,42(12):1163-1168.

DOI:10.3760/cma.j.cn115989-20230727-00047

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
圆锥角膜是一种常见的角膜扩张性疾病,主要表现为角膜中央或旁中央扩张变薄并向前呈锥形突出,常造成高度不规则散光,晚期视力显著下降而致盲 [ 1 ]。圆锥角膜多发于青春期,发病率为0.05%~0.23%,90%的患者双眼不对称发病,是角膜屈光手术的绝对禁忌证 [ 2 ]。随着近视发病率的升高,角膜屈光手术的需求日益增多,早期筛查潜在圆锥角膜,避免术后发生角膜扩张性疾病等十分重要。然而,亚临床圆锥角膜(subclinical keratoconus,SKC)、顿挫型圆锥角膜(frome fruste keratoconus,FFKC)、可疑圆锥角膜(keratoconus suspect,KCS)以及临床前期圆锥角膜等早期圆锥角膜的概念定义不清,为其相关诊治带来了困难,容易造成误诊和漏诊 [ 3 , 4 ]。目前,全球圆锥角膜的诊断标准不一,分级分类错综复杂、交叉重叠,存在诸多争议,临床工作中多数医师结合个人经验进行诊治,具有一定的主观性,其准确性受到医师经验和阅历的影响 [ 5 ]。因此,早期圆锥角膜的发现、诊断较为困难,对眼科医师,尤其是屈光医师的临床诊治提出了挑战。
既往对于圆锥角膜的诊断多是基于临床症状和体征、裂隙灯显微镜检查和角膜地形图检查,然而圆锥角膜的早期症状和体征变化并不明显。已有研究报道,圆锥角膜患者的蛋白激酶和其他分解代谢酶增加,蛋白激酶抑制剂水平降低,导致角膜交联结构恶化,角膜基质减少,角膜生物力学特性变得不稳定,机械强度减弱 [ 6 ]。圆锥角膜发生的根本原因在于角膜生物力学特性的异常,角膜的形态学改变是继发表现,当角膜形态出现明显改变时,则预示着病情已经发展到了中晚期 [ 7 , 8 ]。目前,人工智能(artificial intelligence,AI)技术逐渐应用于眼科领域。AI一方面可充分利用临床上获得的各种类别图像中的潜在信息进行疾病诊断,另一方面可用于预测疾病的发生、进展或手术风险等。AI技术可以提取更多未知的信息进而进行更全面的分析,利用角膜生物力学特性进行早期圆锥角膜的智能诊断已成为近年来研究的热点问题。本文对基于角膜生物力学特性的早期圆锥角膜智能诊断研究进展进行综述。
参考文献
[1]
中华医学会眼科学分会角膜病学组中国圆锥角膜诊断和治疗专家共识(2019年)[J]. 中华眼科杂志 201955(12)∶891895. DOI: 10.3760/cma.j.issn.0412-4081.2019.12.004 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Rabinowitz YS . Keratoconus[J]. Surv Ophthalmol 199842(4)∶297319. DOI: 10.1016/s0039-6257(97)00119-7 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Henriquez MA Hadid M Izquierdo L Jr. A systematic review of subclinical keratoconus and forme fruste keratoconus[J]. J Refract Surg 202036(4)∶270279. DOI: 10.3928/1081597X-20200212-03 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Klyce SD . Chasing the suspect:keratoconus[J]. Br J Ophthalmol 200993(7)∶845847. DOI: 10.1136/bjo.2008.147371 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Gomes JA Tan D Rapuano CJ et al. Global consensus on keratoconus and ectatic diseases[J]. Cornea 201534(4)∶359369. DOI: 10.1097/ICO.0000000000000408 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Roberts CJ Dupps WJ Jr. Biomechanics of corneal ectasia and biomechanical treatments[J]. J Cataract Refract Surg 201440(6)∶991998. DOI: 10.1016/j.jcrs.2014.04.013 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Padmanabhan P Elsheikh A Keratoconus:a biomechanical perspective[J]. Curr Eye Res 202348(2)∶121129. DOI: 10.1080/02713683.2022.2088798 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Esporcatte L Salomão MQ Junior NS et al. Corneal biomechanics for corneal ectasia:update[J]. Saudi J Ophthalmol 202236(1)∶1724. DOI: 10.4103/sjopt.sjopt_192_21 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Piñero DP Alcón N Corneal biomechanics:a review[J]. Clin Exp Optom 201598(2)∶107116. DOI: 10.1111/cxo.12230 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Nyquist GW . Rheology of the cornea:experimental techniques and results[J]. Exp Eye Res 19687(2)∶183188. DOI: 10.1016/s0014-4835(68)80064-8 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Shah S Laiquzzaman M Bhojwani R et al. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes[J]. Invest Ophthalmol Vis Sci 200748(7)∶30263031. DOI: 10.1167/iovs.04-0694 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Schweitzer C Roberts CJ Mahmoud AM et al. Screening of forme fruste keratoconus with the ocular response analyzer[J]. Invest Ophthalmol Vis Sci 201051(5)∶24032410. DOI: 10.1167/iovs.09-3689 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Touboul D Bénard A Mahmoud AM et al. Early biomechanical keratoconus pattern measured with an ocular response analyzer:curve analysis[J]. J Cataract Refract Surg 201137(12)∶21442150. DOI: 10.1016/j.jcrs.2011.06.029 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Wolffsohn JS Safeen S Shah S et al. Changes of corneal biomechanics with keratoconus[J]. Cornea 201231(8)∶849854. DOI: 10.1097/ICO.0b013e318243e42d .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Hallahan KM Sinha Roy A <x>Am</x> <x>brosio</x> R Jret al. Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus[J]. Ophthalmology 2014121(2)∶459468. DOI: 10.1016/j.ophtha.2013.09.013 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Fontes BM Ambrósio R Jr Salomão M et al. Biomechanical and tomographic analysis of unilateral keratoconus[J]. J Refract Surg 201026(9)∶677681. DOI: 10.3928/1081597X-20091105-04 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Ayar O Ozmen MC Muftuoglu O et al. In - vivo corneal biomechanical analysis of unilateral keratoconus [J]. Int J Ophthalmol 20158(6)∶11411145. DOI: 10.3980/j.issn.2222-3959.2015.06.11 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Ventura BV Machado AP Ambrósio R Jret al. Analysis of waveform-derived ORA parameters in early forms of keratoconus and normal corneas[J]. J Refract Surg 201329(9)∶637643. DOI: 10.3928/1081597X-20130819-05 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Kerautret J Colin J Touboul D et al. Biomechanical characteristics of the ectatic cornea[J]. J Cataract Refract Surg 200834(3)∶510513. DOI: 10.1016/j.jcrs.2007.11.018 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Hashemi H Beiranvand A Yekta A et al. Biomechanical properties of early keratoconus:suppressed deformation signal wave[J]. Cont Lens Anterior Eye 201740(2)∶104108. DOI: 10.1016/j.clae.2016.12.004 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Johnson RD Nguyen MT Lee N et al. Corneal biomechanical properties in normal,forme fruste keratoconus,and manifest keratoconus after statistical correction for potentially confounding factors[J]. Cornea 201130(5)∶516523. DOI: 10.1097/ICO.0b013e3181f0579e .
返回引文位置Google Scholar
百度学术
万方数据
[22]
吴元李晓丽晏晓明基于Corvis ST的角膜生物力学参数在圆锥角膜诊断中的价值[J]. 中华实验眼科杂志 201836(2)∶130134. DOI: 10.3760/cma.j.issn.2095-0160.2018.02.011 .
返回引文位置Google Scholar
百度学术
万方数据
Wu Y Li XL Yan XM et al. Research of diagnostic value of corneal biomechanical parameters based on Corvis ST in keratoconus[J]. Chin J Exp Ophthalmol 201836(2)∶130134. DOI: 10.3760/cma.j.issn.2095-0160.2018.02.011 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[23]
翟耀华庞辰久任胜卫可视化角膜生物测量仪生物力学指标对圆锥角膜诊断的灵敏度和特异度评估[J]. 中华实验眼科杂志 201937(7)∶527531. DOI: 10.3760/cma.j.issn.2095-0160.2019.07.007 .
返回引文位置Google Scholar
百度学术
万方数据
Zhai YH Pang CJ Ren SW et al. Evaluation of the sensitivity and specificity of corneal visualization scheimpflug technology biomechanical index in the diagnosis of keratoconus[J]. Chin J Exp Ophthalmol 201937(7)∶527531. DOI: 10.3760/cma.j.issn.2095-0160.2019.07.007 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[24]
Ali NQ Patel DV McGhee CN . Biomechanical responses of healthy and keratoconic corneas measured using a noncontact Scheimpflug-based tonometer[J]. Invest Ophthalmol Vis Sci 201455(6)∶36513659. DOI: 10.1167/iovs.13-13715 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Nemeth G Hassan Z Csutak A et al. Repeatability of ocular biomechanical data measurements with a Scheimpflug-based noncontact device on normal corneas[J]. J Refract Surg 201329(8)∶558563. DOI: 10.3928/1081597X-20130719-06 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Tian L Huang YF Wang LQ et al. Corneal biomechanical assessment using corneal visualization Scheimpflug technology in keratoconic and normal eyes[J/OL]. J Ophthalmol 20142014147516[2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/24800059/. DOI: 10.1155/2014/147516 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Elham R Jafarzadehpur E Hashemi H et al. Keratoconus diagnosis using Corvis ST measured biomechanical parameters[J]. J Curr Ophthalmol 201729(3)∶175181. DOI: 10.1016/j.joco.2017.05.002 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Fuchsluger TA Brettl S Geerling G et al. Biomechanical assessment of healthy and keratoconic corneas (with/without crosslinking) using dynamic ultrahigh-speed Scheimpflug technology and the relevance of the parameter (A1L-A2L)[J]. Br J Ophthalmol 2019103(4)∶558564. DOI: 10.1136/bjophthalmol-2017-311627 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Steinberg J Katz T Lücke K et al. Screening for keratoconus with new dynamic biomechanical in vivo Scheimpflug analyses [J]. Cornea 201534(11)∶14041412. DOI: 10.1097/ICO.0000000000000598 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Zhao Y Shen Y Yan Z et al. Relationship among corneal stiffness,thickness,and biomechanical parameters measured by Corvis ST,Pentacam and ORA in keratoconus[J/OL]. Front Physiol 201910740[2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/31263429/. DOI: 10.3389/fphys.2019.00740 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Rahmati SM Razaghi R Karimi A Biomechanics of the keratoconic cornea:theory,segmentation,pressure distribution,and coupled FE-optimization algorithm[J/OL]. J Mech Behav Biomed Mater 2021113104155[2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/33125958/. DOI: 10.1016/j.jmbbm.2020.104155 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Peña-García P Peris-Martínez C Abbouda A et al. Detection of subclinical keratoconus through non-contact tonometry and the use of discriminant biomechanical functions[J]. J Biomech 201649(3)∶353363. DOI: 10.1016/j.jbiomech.2015.12.031 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Catalán-López S Cadarso-Suárez L López-Ratón M et al. Corneal biomechanics in unilateral keratoconus and fellow eyes with a scheimpflug-based tonometer[J]. Optom Vis Sci 201895(7)∶608615. DOI: 10.1097/OPX.0000000000001241 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Huo Y Chen X Cao H et al. Biomechanical properties analysis of forme fruste keratoconus and subclinical keratoconus[J]. Graefes Arch Clin Exp Ophthalmol 2023261(5)∶13111320. DOI: 10.1007/s00417-022-05916-y .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Sedaghat MR Momeni-Moghaddam H <x>Ambrós</x> <x>io</x> R Jret al. Diagnostic ability of corneal shape and biomechanical parameters for detecting frank keratoconus[J]. Cornea 201837(8)∶10251034. DOI: 10.1097/ICO.0000000000001639 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Chan T Wang YM Yu M et al. Comparison of corneal tomography and a new combined tomographic biomechanical index in subclinical keratoconus[J]. J Refract Surg 201834(9)∶616621. DOI: 10.3928/1081597X-20180705-02 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Guo LL Tian L Cao K et al. Comparison of the morphological and biomechanical characteristics of keratoconus,forme fruste keratoconus,and normal corneas [J]. Semin Ophthalmol 202136(8)∶671678. DOI: 10.1080/08820538.2021.1896752 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Salomão MQ Hofling-Lima AL Gomes Esporcatte LP et al. The role of corneal biomechanics for the evaluation of ectasia patients[J/OL]. Int J Environ Res Public Health 202017(6)∶2113[2024-04-21]. https://pubmed.ncbi.nlm.nih.gov/32209975/. DOI: 10.3390/ijerph17062113 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Yuhas PT Roberts CJ . Clinical ocular biomechanics:where are we after 20 years of progress?[J]. Curr Eye Res 202348(2)∶89104. DOI: 10.1080/02713683.2022.2125530 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Marinescu M Dascalescu D Constantin M et al. Corneal biomechanics-an emerging ocular property with a significant impact[J]. Maedica (Bucur) 202217(4)∶925930. DOI: 10.26574/maedica.2022.17.4.925 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Ting D Foo VH Yang L et al. Artificial intelligence for anterior segment diseases:emerging applications in ophthalmology[J]. Br J Ophthalmol 2021105(2)∶158168. DOI: 10.1136/bjophthalmol-2019-315651 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Ma J Xu X Li M et al. Predictive models of aging of the human eye based on ocular anterior segment morphology[J/OL]. J Biomed Inform 2021120103855[2024-04-21]. https://pubmed.ncbi.nlm.nih.gov/34216803/. DOI: 10.1016/j.jbi.2021.103855 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Cui T Wang Y Ji S et al. Applying machine learning techniques in nomogram prediction and analysis for SMILE treatment[J]. Am J Ophthalmol 20202107177. DOI: 10.1016/j.ajo.2019.10.015 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Xie Y Zhao L Yang X et al. Screening candidates for refractive surgery with corneal tomographic-based deep learning[J]. JAMA Ophthalmol 2020138(5)∶519526. DOI: 10.1001/jamaophthalmol.2020.0507 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
张子俊梁庆丰机器学习在角膜相关疾病辅助诊断中的应用[J]. 中华实验眼科杂志 202038(9)∶804808. DOI: 10.3760/cma.j.cn115989-20200201-00045 .
返回引文位置Google Scholar
百度学术
万方数据
Zhang ZJ Liang QF . Application of machine learning in auxiliary diagnosis of corneal related diseases[J]. Chin J Exp Ophthalmol 202038(9)∶804808. DOI: 10.3760/cma.j.cn115989-20200201-00045 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[46]
周奕文杨燕宁人工智能技术在眼前节疾病及近视诊疗中的应用[J]. 中华实验眼科杂志 202139(9)∶821826. DOI: 10.3760/cma.j.cn115989-20201014-00692 .
返回引文位置Google Scholar
百度学术
万方数据
Zhou YW Yang YN . Application of artificial intelligence technologies in ocular anterior segment diseases diagnosis and myopia management[J]. Chin J Exp Ophthalmol 202139(9)∶821826. DOI: 10.3760/cma.j.cn115989-20201014-00692 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[47]
Labiris G Gatzioufas Z Sideroudi H et al. Biomechanical diagnosis of keratoconus:evaluation of the keratoconus match index and the keratoconus match probability[J/OL]. Acta Ophthalmol 201391(4)∶e258262[2024-04-21]. https://pubmed.ncbi.nlm.nih.gov/23557430/. DOI: 10.1111/aos.12056 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Vinciguerra R Ambrósio R Jr Elsheikh A et al. Detection of keratoconus with a new biomechanical index[J]. J Refract Surg 201632(12)∶803810. DOI: 10.3928/1081597X-20160629-01 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Ambrósio R Jr Lopes BT Faria-Correia F et al. Integration of Scheimpflu g-based corneal tomography and biomechanical assessments for enhancing ectasia detection [J]. J Refract Surg 201733(7)∶434443. DOI: 10.3928/1081597X-20170426-02 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Tan Z Chen X Li K et al. Artificial intelligence-based diagnostic model for detecting keratoconus using videos of corneal force deformation[J/OL]. Transl Vis Sci Technol 202211(9)∶32[2024-04-21]. https://pubmed.ncbi.nlm.nih.gov/36178782/. DOI: 10.1167/tvst.11.9.32 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Krumeich JH Daniel J Knülle A Live-epikeratophakia for keratoconus[J]. J Cataract Refract Surg 199824(4)∶456463. DOI: 10.1016/s0886-3350(98)80284-8 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Luz A Lopes B Hallahan KM et al. Discriminant value of custom ocular response analyzer waveform derivatives in forme fruste keratoconus[J]. Am J Ophthalmol 20161641421. DOI: 10.1016/j.ajo.2015.12.020 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Zhang H Tian L Guo L et al. Comprehensive evaluation of corneas from normal,forme fruste keratoconus and clinical keratoconus patients using morphological and biomechanical properties[J]. Int Ophthalmol 202141(4)∶12471259. DOI: 10.1007/s10792-020-01679-9 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Atalay E Özalp O Erol MA et al. A combined biomechanical and tomographic model for identifying cases of subclinical keratoconus[J]. Cornea 202039(4)∶461467. DOI: 10.1097/ICO.0000000000002205 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Francis M Pahuja N Shroff R et al. Waveform analysis of deformation amplitude and deflection amplitude in normal,suspect,and keratoconic eyes[J]. J Cataract Refract Surg 201743(10)∶12711280. DOI: 10.1016/j.jcrs.2017.10.012 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
Huseynli S Salgado-Borges J Alio JL . Comparative evaluation of Scheimpflug tomography parameters between thin non-keratoconic,subclinical keratoconic,and mild keratoconic corneas[J]. Eur J Ophthalmol 201828(5)∶521534. DOI: 10.1177/1120672118760146 .
返回引文位置Google Scholar
百度学术
万方数据
[57]
Song P Ren S Liu Y et al. Detection of subclinical keratoconus using a novel combined tomographic and biomechanical model based on an automated decision tree[J/OL]. Sci Rep 202212(1)∶5316[2024-04-21]. https://pubmed.ncbi.nlm.nih.gov/35351951/. DOI: 10.1038/s41598-022-09160-6 .
返回引文位置Google Scholar
百度学术
万方数据
[58]
Pérez-Rueda A Jiménez-Rodríguez D Castro-Luna G Diagnosis of subclinical keratoconus with a combined model of biomechanical and topographic parameters[J/OL]. J Clin Med 202110(13)∶2746[2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/34206580/. DOI: 10.3390/jcm10132746 .
返回引文位置Google Scholar
百度学术
万方数据
[59]
Lu NJ Elsheikh A Rozema JJ et al. Combining spectral-domain OCT and air-puff tonometry analysis to diagnose keratoconus[J]. J Refract Surg 202238(6)∶374380. DOI: 10.3928/1081597X-20220414-02 .
返回引文位置Google Scholar
百度学术
万方数据
[60]
Karimi A Meimani N Razaghi R et al. Biomechanics of the healthy and keratoconic corneas:a combination of the clinical data,finite element analysis,and artificial neural network[J]. Curr Pharm Des 201824(37)∶44744483. DOI: 10.2174/1381612825666181224123939 .
返回引文位置Google Scholar
百度学术
万方数据
[61]
Chen X Tan Z Huo Y et al. Localized corneal biomechanical alteration detected in early keratoconus based on corneal deformation using artificial intelligence[J]. Asia Pac J Ophthalmol (Phila) 202312(6)∶574581. DOI: 10.1097/APO.0000000000000644 .
返回引文位置Google Scholar
百度学术
万方数据
[62]
Herber R Pillunat LE Raiskup F Development of a classification system based on corneal biomechanical properties using artificial intelligence predicting keratoconus severity[J/OL]. Eye Vis (Lond) 20218(1)∶21[2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/34059127/. DOI: 10.1186/s40662-021-00244-4 .
返回引文位置Google Scholar
百度学术
万方数据
[63]
Langenbucher A Häfner L Eppig T et al. Keratoconus detection and classification from parameters of the Corvis ® ST:a study based on algorithms of machine learning [J]. Ophthalmologe 2021118(7)∶697706. DOI: 10.1007/s00347-020-01231-1 .
返回引文位置Google Scholar
百度学术
万方数据
[64]
Flockerzi E Vinciguerra R Belin MW et al. Correlation of the Corvis biomechanical factor with tomographic parameters in keratoconus[J]. J Cataract Refract Surg 202248(2)∶215221. DOI: 10.1097/j.jcrs.0000000000000740 .
返回引文位置Google Scholar
百度学术
万方数据
[65]
Flockerzi E Vinciguerra R Belin MW et al. Combined biomechanical and tomographic keratoconus staging:adding a biomechanical parameter to the ABCD keratoconus staging system[J/OL]. Acta Ophthalmol 2022100(5)∶e1135e1142[2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/34655452/. DOI: 10.1111/aos.15044 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
王雁,Email: mocdef.aabnis.piv3417naygnaw
B
所有作者均声明不存在利益冲突
C
国家重点研发计划 (2022YFC2404502)
国家自然科学基金 (82271118)
南开大学眼科学研究院开放基金 (NKYKD202209)
天津市科技计划 (21JCZDJC01190)
天津市卫生健康科技项目 (TJWJ2022XK036)
天津市医学重点学科(专科)建设项目 (TJYXZDXK-016A)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号