目的探讨基于PET的神经影像学淀粉样蛋白、tau、神经变性(ATN)框架在轻度认知障碍(MCI)和阿尔茨海默病(AD)临床辅助诊断中的价值,并分析其与患者认知状态的关系。
方法回顾性纳入2022年5月至2024年3月于广州医科大学附属第二医院诊断为AD、MCI或非AD对照(CP)并行 18F-FDG、 18F-AV45和 18F-AV1451 PET/CT显像的患者98例[男23例、女75例,年龄(67.8±8.6)岁]。记录患者临床资料、简易精神状态检查量表(MMSE)和蒙特利尔认知评价量表(MoCA)评分,将患者分为MCI组、轻度AD组、中度AD组、中-重度AD组和CP组。对PET图像进行视觉评估和半定量分析,获得 18F-FDG(8个)、 18F-AV45(14个)和 18F-AV1451(14个)独立脑分区SUV mean和SUV比值(SUVR),以临床诊断为参考行ROC曲线分析。视觉评估与临床诊断的一致性采用Cohen′s Kappa系数分析。组间半定量比较采用两独立样本 t检验、单因素方差分析、Mann-Whitney U检验或Kruskal-Wallis秩和检验。以年龄作为协变量计算SUVR与认知评分的偏相关系数。
结果综合视觉评估诊断AD+MCI的灵敏度达87.65%(71/81),特异性为14/17,与临床诊断一致性中等( Kappa=0.60, P<0.001)。半定量分析MCI所有独立脑分区 18F-FDG摄取高于AD,而 18F-AV45和 18F-AV1451摄取则相反( t值:2.66~3.95, z值:4.98~15.04,均 P<0.05)。AD的3个亚组间 18F-AV45摄取差异较小( H值:0.46~4.06, F值:0.03~0.08,均 P>0.05)。除内侧颞叶和枕叶以外,中-重度AD组 18F-AV1451摄取有高于中度和轻度AD组的趋势( H值:0.20~5.17,均 P>0.05)。 18F-FDG PET半定量区分MCI与CP的灵敏度较高(13/14), 18F-AV45诊断AD+MCI的灵敏度较高(92.59%,75/81),而 18F-AV1451区分AD与MCI的特异性高(14/14)(AUC值:0.87、0.90和0.92)。AD和MCI患者大脑皮质 18F-FDG摄取与MMSE和MoCA认知评分呈正相关( r值:0.30~0.43和0.29~0.45,均 P<0.05),而 18F-AV45和 18F-AV1451摄取与MMSE和MoCA认知评分呈负相关( 18F-AV45: r值:-0.39~-0.30和-0.38~-0.30,均 P<0.05; 18F-AV1451: r值:-0.50~-0.28和-0.53~-0.28,除内侧颞叶外,余均 P<0.05)。
结论基于神经影像学ATN框架的PET显像有助于早期诊断MCI和AD及AD的分期,在一定程度上可反映AD疾病进展和临床认知状态。
ObjectiveTo explore the value of the amyloid-tau-neurodegeneration (ATN) framework in neuroimaging based on PET for diagnosing mild cognitive impairment (MCI) and Alzheimer′s disease (AD), and analyze its relationship with clinical cognition.
MethodsFrom May 2022 to March 2024, a total of 98 cases (23 males and 75 females, age (67.8±8.6) years) with a diagnosis of AD, MCI, or non-AD (control patients, CP) who underwent 18F-FDG, 18F-AV45, and 18F-AV1451 PET/CT imaging in the Second Affiliated Hospital of Guangzhou Medical University were included retrospectively. The clinical data, Mini-Mental State Examination (MMSE), and Montreal Cognitive Assessment (MoCA) scores were recorded. Cases were divided into MCI group, mild AD group, moderate AD group, moderate-severe AD group, and CP group. PET images were visually and semi-quantitatively evaluated. SUV mean and SUV ratio (SUVR) were obtained from independent brain regions of 18F-FDG ( n=8), 18F-AV45 ( n=14) and 18F-AV1451 ( n=14). ROC curve analysis was performed with clinical diagnosis as a criterion. The consistency between visual assessment and the clinical diagnosis was analyzed by Cohen′s Kappa coefficient. Semi-quantitative comparisons between groups were performed using the independent-sample t test, one-way analysis of variance, Mann-Whitney U test, or Kruskal-Wallis rank sum test. Age was used as a covariate to calculate the partial correlation coefficient between SUVR and cognitive scores.
ResultsThe sensitivity and specificity of comprehensive visual assessment in diagnosing AD+ MCI were 87.65%(71/81) and 14/17 respectively, showing a moderate consistency with clinical diagnosis ( Kappa=0.60, P<0.001). Semi-quantitative analysis showed that 18F-FDG uptakes in all independent brain regions of MCI patients were higher than those of AD patients, whereas the uptakes of 18F-AV45 and 18F-AV1451 were lower ( t values: 2.66-3.95, z values: 4.98-15.04, all P<0.05). The difference in 18F-AV45 uptake among the three subgroups of AD was relatively small ( H values: 0.46-4.06, F values: 0.03-0.08, all P>0.05). Except for the medial temporal and occipital lobes, the 18F-AV1451 uptake in the moderate-severe AD group tended to be higher than that in the moderate and mild AD groups, though not statistically significant ( H values: 0.20-5.17, all P>0.05). 18F-FDG PET semi-quantitatively distinguished MCI from CP with a high sensitivity (13/14), 18F-AV45 demonstrated a high sensitivity for diagnosing AD+ MCI (92.59%, 75/81), and 18F-AV1451 had a high specificity for distinguishing AD from MCI (14/14) (AUCs: 0.87, 0.90 and 0.92). The uptakes of 18F-FDG in gray matter of AD and MCI patients were positively correlated with MMSE and MoCA scores ( r values: 0.30-0.43, 0.29-0.45, all P<0.05), while the uptakes of 18F-AV45 and 18F-AV1451 were negatively correlated with MMSE and MoCA scores ( 18F-AV45, r values: from -0.39 to -0.30, from -0.38 to -0.30, all P<0.05; 18F-AV1451, r values: from -0.50 to -0.28, from -0.53 to -0.28, except for medial temporal lobe P>0.05, all others P<0.05).
ConclusionThe PET-based neuroimaging ATN framework is helpful for early diagnosis of MCI and AD, as well as for AD staging, and may reflect the disease progression and clinical cognitive status of AD to a certain extent.
熊敏,尤鸿吉,罗小明,等. 基于PET的神经影像学ATN框架在阿尔茨海默病诊断中的应用[J]. 中华核医学与分子影像杂志,2024,44(12):705-711.
DOI:10.3760/cma.j.cn321828-20240117-00024版权归中华医学会所有。
未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。
熊敏:研究设计与实施、数据分析、论文撰写;尤鸿吉:研究实施、数据收集;罗小明、刘艺培:数据采集、图像处理;姜圣男:研究指导、论文修改

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。