临床研究
ENGLISH ABSTRACT
Braak-tau IQ:一种适用于阿尔茨海默病tau PET图像的量化分解方法
门建炜
石蓉
王敏
张琪
鲁佳荧
张慧玮
赵倩华
蒋皆恢
左传涛
管一晖
作者及单位信息
·
DOI: 10.3760/cma.j.cn321828-20240122-00030
Braak-tau IQ: a quantization decomposition method based on tau PET images in Alzheimer′s disease
Men Jianwei
Shi Rong
Wang Min
Zhang Qi
Lu Jiaying
Zhang Huiwei
Zhao Qianhua
Jiang Jiehui
Zuo Chuantao
Guan Yihui
Authors Info & Affiliations
Men Jianwei
School of Life and Science, Shanghai University; Shanghai Institute of Biomedical Engineering, Shanghai 200444, China
Shi Rong
School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
Wang Min
School of Life and Science, Shanghai University; Shanghai Institute of Biomedical Engineering, Shanghai 200444, China
Zhang Qi
School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
Lu Jiaying
Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
Zhang Huiwei
Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
Zhao Qianhua
Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
Jiang Jiehui
School of Life and Science, Shanghai University; Shanghai Institute of Biomedical Engineering, Shanghai 200444, China
Zuo Chuantao
Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
Guan Yihui
Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
·
DOI: 10.3760/cma.j.cn321828-20240122-00030
152
50
0
0
0
0
PDF下载
APP内阅读
摘要

目的基于tau IQ算法,建立一种基于Braak分期纵向且不涉及β-淀粉样蛋白(Aβ)显像的体素级别量化方法,以实现特异性tau量化。

方法该横断面研究纳入2018年11月至2020年7月间复旦大学附属华山医院核医学/PET中心的92例受试者[男35例、女57例,年龄(62.9±10.4)岁],其中认知正常(CN)者28名、轻度认知障碍(MCI)患者20例、阿尔茨海默病(AD)患者44例。所有受试者采集 18F-florzolotau PET图像及简易精神状态检查量表(MMSE)和临床痴呆评定量表(CDR)评分。通过Braak分期构建tau纵向数据集,采用logistic回归进行体素级别拟合得到基准矩阵,最后通过最小二乘法对矩阵进行分解,得到特异性沉淀系数Tau load。采用单因素方差分析(事后检验为Tukey法)比较组间Tau load、SUV比值(SUVR)差异,采用ROC曲线分析CN、MCI与AD两两组间的分类能力,采用Spearman秩相关分析Tau load、SUVR与MMSE评分、CDR评分之间的相关性。

结果CN组的Tau load接近于0,并显著低于MCI组与AD组( F=55.03, P<0.001;事后检验均 P<0.001),各ROI的SUVR差异也均有统计学意义( F值:36.46~55.38,均 P<0.001);相较于SUVR,Tau load显示出更大的组间差异。在CN、MCI与AD两两组间的ROC曲线分析中,Tau load的AUC一直保持最高(0.754~1.000)。Tau load及各ROI的SUVR与MMSE评分呈负相关性( r s 值:-0.698~-0.583,均 P<0.05),与CDR评分呈正相关性( r s 值:0.648~0.783,均 P<0.05),其中Tau load的相关系数绝对值最高。

结论相对于传统半定量SUVR方法,Braak-tau IQ算法不需要特定参考脑区也可以实现特异性tau量化性能。

阿尔茨海默病;认知功能障碍;苯并噻唑类;tau蛋白质类;正电子发射断层显像术;算法
ABSTRACT

ObjectiveA voxel-level quantification method based on the tau IQ algorithm and Braak staging, excluding β-amyloid (Aβ) imaging, was developed to achieve specific tau quantification.

MethodsThis cross-sectional study included 92 subjects (35 males, 57 females; age (62.9±10.4) years) from the Nuclear Medicine/PET Center of Huashan Hospital, Fudan University between November 2018 and July 2020. The cohort comprised 28 cognitively normal (CN) individuals, 20 patients with mild cognitive impairment (MCI), and 44 patients with Alzheimer′s disease (AD). All participants underwent 18F-florzolotau PET imaging, Mini-Mental State Examination (MMSE), and Clinical Dementia Rating (CDR) scoring. A longitudinal tau dataset was constructed based on Braak staging. Voxel-level logistic regression fitting provided a baseline matrix, decomposed via least squares to yield the Tau load coefficient. One-way analysis of variance (with post hoc Tukey) was used to compare Tau load and SUV ratio (SUVR) among groups. ROC curve analysis was used to evaluate classification between CN, MCI and AD. Spearman rank correlation was used to assess the relationships between Tau load, SUVR, and MMSE scores or CDR scores.

ResultsThe Tau load in the CN group was close to 0 and significantly lower than that in the MCI and AD groups ( F=55.03, P<0.001; post hoc tests all P<0.001). Significant differences were also observed in the SUVR across all ROIs ( F values: 36.46-55.38, all P<0.001). Compared to SUVR, Tau load demonstrated greater intergroup differences. In ROC curve analyses between each pair of CN, MCI, and AD groups, Tau load consistently achieved the highest AUC (0.754-1.000). Both Tau load and SUVR for each ROI were negatively correlated with MMSE scores ( r s values: from -0.698 to -0.583, all P<0.05) and positively correlated with CDR scores ( r s values: 0.648-0.783, all P<0.05), with Tau load showing the highest absolute correlation coefficients.

ConclusionCompared to the traditional semi-quantitative SUVR method, the Braak-tau IQ algorithm does not require a specific reference brain region to achieve specific tau quantification.

Alzheimer disease;Cognitive dysfunction;Benzothiazoles;tau proteins;Positron-emission tomography;Algorithms
Jiang Jiehui, Email: nc.defudabe.uhsiuheijgnaij;
Zuo Chuantao, Email: nc.defudabe.nadufoatnauhcouz
引用本文

门建炜,石蓉,王敏,等. Braak-tau IQ:一种适用于阿尔茨海默病tau PET图像的量化分解方法 [J]. 中华核医学与分子影像杂志,2024,44(12):718-723.

DOI:10.3760/cma.j.cn321828-20240122-00030

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
阿尔茨海默病(Alzheimer′s disease, AD)是一种严重的神经退行性疾病,其标志性病理特征是β-淀粉样蛋白(β-amyloid, Aβ)斑块和tau蛋白缠结 [ 1 ]。根据神经原纤维缠结(neurofibrillary tangle, NFT)在脑内的分布模式,Braak提出了AD病理学分期系统,为使用tau PET显像对活体NFT进展进行分期和监测提供了一个重要的框架 [ 2 ]
目前,tau PET显像的分析方法主要集中在SUV比值(SUV ratio, SUVR)方法上 [ 3 , 4 ],即使用tau相关ROI来量化对应区域的沉积水平,如Braak Ⅰ~Ⅵ相对应的区域 [ 4 , 5 ],是tau PET显像最常用的半定量指标 [ 6 , 7 ];其他方法还有采用临床Aβ以拟合tau严重程度的tau IQ算法 [ 5 , 8 ]等,这些方法应用于横断面 [ 9 , 10 ]和纵向数据 [ 11 , 12 , 13 ]研究,以显示tau信号的增加与AD疾病进展。
然而,tau PET显像的SUVR依赖于参考脑区与ROI的选取,tau IQ算法需要借助临床Aβ纵向先验知识来拟合模型,且由于个体异质性、非病理性tau沉淀的存在,tau PET图像定量分析存在假阳性。因此,本研究希望在tau IQ算法的基础之上,建立一种基于Braak分期纵向且不涉及Aβ先验的tau PET图像的体素级别量化方法,以实现特异性tau量化性能。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Jack CR Jr, Bennett DA , Blennow K ,et al. NIA-AA research framework: toward a biological definition of Alzheimer′s disease[J]. Alzheimers Dement, 2018,14(4):535-562. DOI: 10.1016/j.jalz.2018.02.018 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Macedo AC , Tissot C , Therriault J ,et al. The use of tau PET to stage Alzheimer disease according to the Braak staging framework[J]. J Nucl Med, 2023,64(8):1171-1178. DOI: 10.2967/jnumed.122.265200 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Ju ZZ , Li ZY , Lu JY ,et al. In vivo tau burden is associated with abnormal brain functional connectivity in Alzheimer′s disease: a 18 F-florzolotau study [J]. Brain Sci, 2022,12(10):1355. DOI: 10.3390/brainsci12101355 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Schöll M , Lockhart SN , Schonhaut DR ,et al. PET imaging of tau deposition in the aging human brain[J]. Neuron, 2016,89(5):971-982. DOI: 10.1016/j.neuron.2016.01.028 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Whittington A , Gunn RN ; Alzheimer′s Diseas e Neuroimaging Initiative . Tau IQ: a canonical image based algorithm to quantify tau PET scans [J]. J Nucl Med, 2021,62(9):1292-1300. DOI: 10.2967/jnumed.120.258962 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
王惟一王莹王梦洁 阿尔茨海默病中tau蛋白的 18 F-MK6240 PET显像研究及认知相关分析 [J]. 中华核医学与分子影像杂志 2023,43(10):583-587. DOI: 10.3760/cma.j.cn321828-20220709-00217 .
返回引文位置Google Scholar
百度学术
万方数据
Wang WY , Wang Y , Wang MJ ,et al. 18 F-MK6240 PET imaging of tau protein in Alzheimer′s disease and cognitive correlation analysis [J]. Chin J Nucl Med Mol Imaging, 2023,43(10):583-587. DOI: 10.3760/cma.j.cn321828-20220709-00217 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[7]
王敏鲁佳荧李玲 基于 18 F-APN-1607 PET显像的阿尔茨海默病tau蛋白脑网络及偏侧性研究 [J]. 中华核医学与分子影像杂志 2021,41(1):28-34. DOI: 10.3760/cma.j.cn321828-20200715-00283 .
返回引文位置Google Scholar
百度学术
万方数据
Wang M , Lu JY , Li L ,et al. Study on tau brain network and asymmetry of Alzheimer′s disease based on 18 F-APN-1607 PET imaging [J]. Chin J Nucl Med Mol Imaging, 2021,41(1):28-34. DOI: 10.3760/cma.j.cn321828-20200715-00283 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[8]
Whittington A , Gunn RN ;Alzheimer′s Disease Neuroimaging Initiative. Amyloid load: a more sensitive biomarker for amyloid imaging[J]. J Nucl Med, 2019,60(4):536-540. DOI: 10.2967/jnumed.118.210518 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Johnson KA , Schultz A , Betensky RA ,et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease[J]. Ann Neurol, 2016,79(1):110-119. DOI: 10.1002/ana.24546 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Villemagne VL , Fodero-Tavoletti MT , Masters CL ,et al. Tau imaging: early progress and future directions[J]. Lancet Neurol, 2015,14(1):114-124. DOI: 10.1016/S1474-4422(14)70252-2 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Chen SD , Lu JY , Li HQ ,et al. Staging tau pathology with tau PET in Alzheimer′s disease: a longitudinal study[J]. Transl Psychiatry, 2021,11(1):483. DOI: 10.1038/s41398-021-01602-5 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Jack CR Jr, Wiste HJ , Schwarz CG ,et al. Longitudinal tau PET in ageing and Alzheimer′s disease[J]. Brain, 2018,141(5):1517-1528. DOI: 10.1093/brain/awy059 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Sintini I , Martin PR , Graff-Radford J ,et al. Longitudinal tau-PET uptake and atrophy in atypical Alzheimer′s disease[J]. Neuroimage Clin, 2019,23:101823. DOI: 10.1016/j.nicl.2019.101823 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Lu J , Ma X , Zhang H ,et al. Head-to-head comparison of plasma and PET imaging ATN markers in subjects with cognitive complaints[J]. Transl Neurodegener, 2023,12(1):34. DOI: 10.1186/s40035-023-00365-x .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Lundeen TF , Seibyl JP , Covington MF ,et al. Signs and artifacts in amyloid PET[J]. Radiographics, 2018,38(7):2123-2133. DOI: 10.1148/rg.2018180160 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Tian M , Zuo C , Civelek AC ,et al. International nuclear medicine consensus on the clinical use of amyloid positron emission tomography in Alzheimer′s disease[J]. Phenomics, 2023,3(4):375-389. DOI: 10.1007/s43657-022-00068-9 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Shi R , Wang L , Jiang J . An unsupervised region of interest extraction model for tau PET images and its application in the diagnosis of Alzheimer′s disease [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2022,2022:2157-2160. DOI: 10.1109/EMBC48229.2022.9871269 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Chotipanich C , Nivorn M , Kunawudhi A ,et al. Evaluation of imaging windows for tau PET imaging using 18 F-PI2620 in cognitively normal individuals, mild cognitive impairment, and Alzheimer′s disease patients [J]. Mol Imaging, 2020,19:1536012120947582. DOI: 10.1177/1536012120947582 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Whittington A , Sharp DJ , Gunn RN . Spatiotemporal distribution of β-amyloid in Alzheimer disease is the result of heterogeneous regional carrying capacities[J]. J Nucl Med, 2018,59(5):822-827. DOI: 10.2967/jnumed.117.194720 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Braak H , Thal DR , Ghebremedhin E ,et al. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years[J]. J Neuropathol Exp Neurol, 2011,70(11):960-969. DOI: 10.1097/NEN.0b013e318232a379 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Cho H , Choi JY , Hwang MS ,et al. Tau PET in Alzheimer disease and mild cognitive impairment[J]. Neurology, 2016,87(4):375-383. DOI: 10.1212/WNL.0000000000002892 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Chiotis K , Saint-Aubert L , Savitcheva I ,et al. Imaging in - vivo tau pathology in Alzheimer′s disease with THK5317 PET in a multimodal paradigm [J]. Eur J Nucl Med Mol Imaging, 2016,43(9):1686-1699. DOI: 10.1007/s00259-016-3363-z .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Smith R , Cullen NC , Pichet Binette A ,et al. Tau-PET is superior to phospho-tau when predicting cognitive decline in symptomatic AD patients[J]. Alzheimers Dement, 2023,19(6):2497-2507. DOI: 10.1002/alz.12875 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Ossenkoppele R , Smith R , Ohlsson T ,et al. Associations between tau, Aβ,and cortical thickness with cognition in Alzheimer disease[J]. Neurology, 2019,92(6):e601-e612. DOI: 10.1212/WNL.0000000000006875 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
蒋皆恢,Email: nc.defudabe.uhsiuheijgnaij
B
左传涛,Email: nc.defudabe.nadufoatnauhcouz
C

门建炜:研究实施、统计学分析、论文撰写;石蓉:算法指导、论文撰写;王敏、张琪、鲁佳荧、张慧玮:研究实施、论文修改;赵倩华、蒋皆恢:研究指导、论文修改;左传涛、管一晖:研究指导、论文修改、经费支持

D
所有作者声明无利益冲突
E
国家自然科学基金 (62206165,81971641)
上海市科技计划项目 (22YF1413900)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号