首页 中华急诊医学杂志 2025年34卷01期 基于5G和人工智能构建智能化院外心脏骤停急救系统
中华急诊医学杂志
期刊首页
过刊列表
高级检索
稿件发表
• 专家论坛 •
基于5G和人工智能构建智能化院外心脏骤停急救系统
作者及单位信息
·
DOI: 10.3760/cma.j.issn.1671-0282.2025.01.002
281
73
0
0
2
0
扫描转手机阅读
下载中华医学期刊APP阅读更流畅 体验更丰富
PDF下载
APP内阅读
摘要
心脏骤停是一种严重威胁生命的急症,每年造成全球数百万人直接死亡,其中,约有80%发生医院以外,又称为院外心脏骤停(out-of-hospital cardiac arrest,OHCA) [1]。我国医疗资源分布不均衡,发生OHCA的患者抢救出院存活率不足1%,能够恢复良好神经功能的患者更是少之又少 [2]。OHCA高病死率与急救链的各个环节密切相关,包括识别延迟、现场急救启动不足、心肺复苏(cardiopulmonary resuscitation, CPR)质量不高、自动体外除颤器(automated external defibrillator, AED)使用率低以及院前与院内医疗服务衔接不畅等 [3]。
引用本文
李志强,韩雪钰,吕菁君,等. 基于5G和人工智能构建智能化院外心脏骤停急救系统[J]. 中华急诊医学杂志,2025,34(01):6-11.
DOI:10.3760/cma.j.issn.1671-0282.2025.01.002PERMISSIONS
Request permissions for this article from CCC.
评价本文
*以上评分为匿名评价
本文评分
0分
[累计0个]
向我们报错
版权归中华医学会所有。
未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。
心脏骤停是一种严重威胁生命的急症,每年造成全球数百万人直接死亡,其中,约有80%发生医院以外,又称为院外心脏骤停(out-of-hospital cardiac arrest,OHCA)
[
1
]。我国医疗资源分布不均衡,发生OHCA的患者抢救出院存活率不足1%,能够恢复良好神经功能的患者更是少之又少
[
2
]。OHCA高病死率与急救链的各个环节密切相关,包括识别延迟、现场急救启动不足、心肺复苏(cardiopulmonary resuscitation, CPR)质量不高、自动体外除颤器(automated external defibrillator, AED)使用率低以及院前与院内医疗服务衔接不畅等
[
3
]。
近年来,随着人工智能(artificial intelligence, AI)和互联网技术的快速发展,为构建更高效、更智能的院前急救系统提供了前所未有的机遇。这些新兴技术不仅能够提升OHCA的早期识别和预警能力,还能优化急救流程,提高急救人员的工作效率,并促进院前与院内医疗信息共享与协同,最终有望显著改善OHCA患者的预后
[
4
]。5G通信与AI技术在院前急救领域的融合发展与创新应用,可以对患者做到实时监控、早期发现、提供策略应对,为OHCA患者提供更及时、更精准、更高效的救治。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
已是订阅账户?
登录
参考文献
[1]
Myat A , Song KJ , Rea T . Out-of-hospital cardiac arrest: current concepts[J]. Lancet, 2018,391(10124):970-979. DOI:
10.1016/S0140-6736(18)30472-0
.
[2]
Xie X , Zheng JQ , Zheng W ,et al. Efforts to improve survival outcomes of out-of-hospital cardiac arrest in China: basic-OHCA[J]. Circ Cardiovasc Qual Outcomes, 2023,16(2):e008856. DOI:
10.1161/CIRCOUTCOMES.121.008856
.
[3]
Meaney PA , Bobrow BJ , Mancini ME ,et al. Cardiopulmonary resuscitation quality: improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American heart association[J]. Circulation, 2013,128(4):417-435. DOI:
10.1161/CIR.0b013e31829d8654
.
[4]
Plodr M , Chalusova E . Current trends in the management of out of hospital cardiac arrest (OHCA)[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2024,168(2):105-116. DOI:
10.5507/bp.2024.006
.
[5]
Armoundas AA , Ahmad FS , Bennett DA ,et al. Data interoperability for ambulatory monitoring of cardiovascular disease: a scientific statement from the American heart association[J]. Circ Genom Precis Med, 2024,17(3):e000095. DOI:
10.1161/HCG.0000000000000095
.
[6]
Perez MV , Mahaffey KW , Hedlin H ,et al. Large-scale assessment of a smartwatch to identify atrial fibrillation[J]. N Engl J Med, 2019,381(20):1909-1917. DOI:
10.1056/NEJMoa1901183
.
[7]
Krittanawong C , Rogers AJ , Johnson KW ,et al. Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management[J]. Nat Rev Cardiol, 2021,18(2):75-91. DOI:
10.1038/s41569-020-00445-9
.
[8]
Khundaqji H , Hing W , Furness J ,et al. Smart shirts for monitoring physiological parameters: scoping review[J]. JMIR Mhealth Uhealth, 2020,8(5):e18092. DOI:
10.2196/18092
.
[9]
Chen GR , Au C , Chen J . Textile triboelectric nanogenerators for wearable pulse wave monitoring[J]. Trends Biotechnol, 2021,39(10):1078-1092. DOI:
10.1016/j.tibtech.2020.12.011
.
[10]
Fang YS , Zou YJ , Xu J ,et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor[J]. Adv Mater, 2021,33(41):e2104178. DOI:
10.1002/adma.202104178
.
[11]
Lou MN , Abdalla I , Zhu MM ,et al. Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring[J]. ACS Appl Mater Interfaces, 2020,12(17):19965-19973. DOI:
10.1021/acsami.0c03670
.
[12]
[13]
Scquizzato T , Semeraro F . No more unwitnessed out-of-hospital cardiac arrests in the future thanks to technology[J]. Resuscitation, 2022,170:79-81. DOI:
10.1016/j.resuscitation.2021.11.010
.
[14]
Sarkisian L , Mickley H , Schakow H ,et al. Global positioning system alerted volunteer first responders arrive before emergency medical services in more than four out of five emergency calls[J]. Resuscitation, 2020,152:170-176. DOI:
10.1016/j.resuscitation.2019.12.010
.
[15]
Darginavicius L , Vencloviene J , Dobozinskas P ,et al. AI-enabled public surveillance cameras for rapid emergency medical service activation in out-of-hospital cardiac arrests[J]. Curr Probl Cardiol, 2023,48(11):101915. DOI:
10.1016/j.cpcardiol.2023.101915
.
[16]
Douma MJ . Automated video surveillance and machine learning: leveraging existing infrastructure for cardiac arrest detection and emergency response activation[J]. Resuscitation, 2018,126:e3. DOI:
10.1016/j.resuscitation.2018.02.010
.
[17]
Scquizzato T . Cardiac arrest detection through artificial intelligence-based surveillance camera: a working prototype[J]. Resuscitation, 2018,130:e114. DOI:
10.1016/j.resuscitation.2018.07.239
.
[18]
Chan J , Rea T , Gollakota S ,et al. Contactless cardiac arrest detection using smart devices[J]. NPJ Digit Med, 2019,2:52. DOI:
10.1038/s41746-019-0128-7
.
[19]
Rafi S , Gangloff C , Paulhet E ,et al. Out-of-hospital cardiac arrest detection by machine learning based on the phonetic characteristics of the caller’s voice[J]. Stud Health Technol Inform, 2022,294:445-449. DOI:
10.3233/SHTI220498
.
[20]
Blomberg SN , Folke F , Ersbøll AK ,et al. Machine learning as a supportive tool to recognize cardiac arrest in emergency calls[J]. Resuscitation, 2019,138:322-329. DOI:
10.1016/j.resuscitation.2019.01.015
.
[21]
Chin KC , Hsieh TC , Chiang WC ,et al. Early recognition of a caller’s emotion in out-of-hospital cardiac arrest dispatching: an artificial intelligence approach[J]. Resuscitation, 2021,167:144-150. DOI:
10.1016/j.resuscitation.2021.08.032
.
[22]
Linderoth G , Lippert F , Østergaard D ,et al. Live video from bystanders’ smartphones to medical dispatchers in real emergencies[J]. BMC Emerg Med, 2021,21(1):101. DOI:
10.1186/s12873-021-00493-5
.
[23]
Andelius L , Malta Hansen C , Lippert FK ,et al. Smartphone activation of citizen responders to facilitate defibrillation in out-of-hospital cardiac arrest[J]. J Am Coll Cardiol, 2020,76(1):43-53. DOI:
10.1016/j.jacc.2020.04.073
.
[24]
Kurz MC , Bobrow BJ , Buckingham J ,et al. Telecommunicator cardiopulmonary resuscitation: a policy statement from the American Heart Association[J]. Circulation, 2020,141(12):e686-e700. DOI:
10.1161/CIR.0000000000000744
.
[25]
Müller MP , Metelmann C , Thies KC ,et al. Reporting standard for describing first responder systems, smartphone alerting systems, and AED networks[J]. Resuscitation, 2024,195:110087. DOI:
10.1016/j.resuscitation.2023.110087
.
[26]
Smida T , Salerno J , Weiss L ,et al. PulsePoint dispatch associated patient characteristics and prehospital outcomes in a mid-sized metropolitan area[J]. Resuscitation, 2022,170:36-43. DOI:
10.1016/j.resuscitation.2021.11.007
.
[27]
Scquizzato T , Pallanch O , Belletti A ,et al. Enhancing citizens response to out-of-hospital cardiac arrest: a systematic review of mobile-phone systems to alert citizens as first responders[J]. Resuscitation, 2020,152:16-25. DOI:
10.1016/j.resuscitation.2020.05.006
.
[28]
<x>Mül</x>
<x>ler</x>
MP , Jonsson M , Böttiger BW ,et al. Telephone cardiopulmonary resuscitation, first responder systems, cardiac arrest centers, and global campaigns to save lives[J]. Curr Opin Crit Care, 2023,29(6):621-627. DOI:
10.1097/MCC.0000000000001112
.
[29]
Scquizzato T , Gamberini L , Semeraro F . How technology can save lives in cardiac arrest[J]. Curr Opin Crit Care, 2022,28(3):250-255. DOI:
10.1097/MCC.0000000000000930
.
[30]
Ringh M , Rosenqvist M , Hollenberg J ,et al. Mobile-phone dispatch of laypersons for CPR in out-of-hospital cardiac arrest[J]. N Engl J Med, 2015,372(24):2316-2325. DOI:
10.1056/NEJMoa1406038
.
[31]
Ahn S , Jung S , Park JH ,et al. Artificial intelligence for predicting shockable rhythm during cardiopulmonary resuscitation: in-hospital setting[J]. Resuscitation, 2024,202:110325. DOI:
10.1016/j.resuscitation.2024.110325
.
[32]
Hajeb-M S , Cascella A , Valentine M ,et al.
Deep neural network approach for continuous ECG-based automated external defibrillator shock advisory system during cardiopulmonary re
suscitation
[J]. J Am Heart Assoc, 2021,10(6):e019065. DOI:
10.1161/JAHA.120.019065
.
[33]
Isasi I , Irusta U , Aramendi E ,et al. Rhythm analysis during cardiopulmonary resuscitation using convolutional neural networks[J]. Entropy, 2020,22(6):595. DOI:
10.3390/e22060595
.
[34]
Shen CP , Freed BC , Walter DP ,et al. Convolution neural network algorithm for shockable arrhythmia classification within a digitally connected automated external defibrillator[J]. J Am Heart Assoc, 2023,12(8):e026974. DOI:
10.1161/JAHA.122.026974
.
[35]
Ristagno G , Scapigliati A , Semeraro F . Predicting shockable rhythms during chest compression with artificial intelligence: a winning bet?[J]. Resuscitation, 2024,202:110346. DOI:
10.1016/j.resuscitation.2024.110346
.
[36]
Homma PCM , de Graaf C , Tan HL ,et al. Transfer of essential AED information to treating hospital (TREAT)[J]. Resuscitation, 2020,149:47-52. DOI:
10.1016/j.resuscitation.2020.01.033
.
[37]
Nordseth T , Eftestøl T , Aramendi E ,et al. Extracting physiologic and clinical data from defibrillators for research purposes to improve treatment for patients in cardiac arrest[J]. Resusc Plus, 2024,18:100611. DOI:
10.1016/j.resplu.2024.100611
.
[38]
Engan K , Hinna T , Ryen T ,et al. Chest compression rate measurement from smartphone video[J]. Biomed Eng Online, 2016,15(1):95. DOI:
10.1186/s12938-016-0218-6
.
[39]
Meinich-Bache Ø , Engan K , Birkenes TS ,et al. Real-time chest compression quality measurements by smartphone camera[J]. J Healthc Eng, 2018,2018:6241856. DOI:
10.1155/2018/6241856
.
[40]
Stipulante S , Delfosse AS , Donneau AF ,et al. Interactive videoconferencing versus audio telephone calls for dispatcher-assisted cardiopulmonary resuscitation using the ALERT algorithm: a randomized trial[J]. Eur J Emerg Med, 2016,23(6):418-424. DOI:
10.1097/MEJ.0000000000000338
.
[41]
Olasveengen TM , Mancini ME , Perkins GD ,et al.
Adult basic life support: international consensus on car
diopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations
[J]. Resuscitation, 2020,156:A35-A79. DOI:
10.1016/j.resuscitation.2020.09.010
.
[42]
Park JU , Kang DW , Erdenebayar U ,et al. Estimation of arterial blood pressure based on artificial intelligence using single earlobe photoplethysmography during cardiopulmonary resuscitation[J]. J Med Syst, 2019,44(1):18. DOI:
10.1007/s10916-019-1514-z
.
[43]
Liu ZD , Li Y , Zhang YT ,et al. Cuffless blood pressure measurement using smartwatches: a large-scale validation study[J]. IEEE J Biomed Health Inform, 2023,27(9):4216-4227. DOI:
10.1109/JBHI.2023.3278168
.
[44]
Liu ZD , Li Y , Zhang YT ,et al. HGCTNet: handcrafted feature-guided CNN and transformer network for wearable cuffless blood pressure measurement[J]. IEEE J Biomed Health Inform, 2024,28(7):3882-3894. DOI:
10.1109/JBHI.2024.3395445
.
[45]
Jiang LJ , Chen SX , Pan X ,et al. Estimation of invasive coronary perfusion pressure using electrocardiogram and Photoplethysmography in a porcine model of cardiac arrest[J]. Comput Methods Programs Biomed, 2024,254:108284. DOI:
10.1016/j.cmpb.2024.108284
.
[46]
Kim TH , Kim H , Hong KJ ,et al. Prediction of cerebral perfusion pressure during CPR using electroencephalogram in a swine model of ventricular fibrillation[J]. Am J Emerg Med, 2021,45:137-143. DOI:
10.1016/j.ajem.2021.02.051
.
[47]
Byrsell F , Jonsson M , Claesson A ,et al. Swedish emergency medical dispatch centres’ ability to answer emergency medical calls and dispatch an ambulance in response to out-of-hospital cardiac arrest calls in accordance with the American Heart Association performance goals: an observational study[J]. Resuscitation, 2023,189:109896. DOI:
10.1016/j.resuscitation.2023.109896
.
[48]
Yap J , Helmer J , Gessaroli M ,et al. Performance of the medical priority dispatch system in correctly classifying out-of-hospital cardiac arrests as appropriate for resuscitation[J]. Resuscitation, 2022,181:123-131. DOI:
10.1016/j.resuscitation.2022.11.001
.
[49]
McKenzie N , Williams TA , Ho KM ,et al. Direct transport to a PCI-capable hospital is associated with improved survival after adult out-of-hospital cardiac arrest of medical aetiology[J]. Resuscitation, 2018,128:76-82. DOI:
10.1016/j.resuscitation.2018.04.039
.
[50]
Rogers H , Madathil KC , Agnisarman S ,et al. A systematic review of the implementation challenges of telemedicine systems in ambulances[J]. Telemed J E Health, 2017,23(9):707-717. DOI:
10.1089/tmj.2016.0248
.
[51]
Cournoyer A , Notebaert é , de Montigny L ,et al. Potential impact of a prehospital redirection system for refractory cardiac arrest[J]. Resuscitation, 2017,119:37-42. DOI:
10.1016/j.resuscitation.2017.08.001
.
[52]
Salman OH , Taha Z , Alsabah MQ ,et al. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work[J]. Comput Methods Programs Biomed, 2021,209:106357. DOI:
10.1016/j.cmpb.2021.106357
.
[53]
Hameed K , Bajwa IS , Sarwar N ,et al. Integration of 5G and block-chain technologies in smart telemedicine using IoT[J]. J Healthc Eng, 2021,2021:8814364. DOI:
10.1155/2021/8814364
.
[54]
Krittanawong C , Rogers AJ , Aydar M ,et al. Integrating blockchain technology with artificial intelligence for cardiovascular medicine[J]. Nat Rev Cardiol, 2020,17(1):1-3. DOI:
10.1038/s41569-019-0294-y
.
[55]
Miller DD . Machine intelligence in cardiovascular medicine[J]. Cardiol Rev, 2020,28(2):53-64. DOI:
10.1097/CRD.0000000000000294
.
[56]
Berlet M , Vogel T , Gharba M ,et al. Emergency telemedicine mobile ultrasounds using a 5G-enabled application: development and usability study[J]. JMIR Form Res, 2022,6(5):e36824. DOI:
10.2196/36824
.
[57]
Mammas CS , Mamma AS . Remote monitoring, AI, machine learning and mobile ultrasound integration upon 5G Internet in the prehospital care to support the golden hour principle and optimize outcomes in severe trauma and emergency surgery[J]. Stud Health Technol Inform, 2024,316:1807-1811. DOI:
10.3233/SHTI240782
.
备注信息
A
吕菁君,Email:
nc.defudabe.uhwnujgnijvl;
B
沈波,Email:
mocdef.6ab21xdhwobnehs
C
李志强和韩雪钰为共同第一作者
D
所有作者声明无利益冲突
E
湖北省重点研发计划 (2023BCB017) 
国家重点研发计划主动健康和人口老龄化科技应对专项 (2023YFC3604700) 
国家重点研发计划诊疗装备与生物医用技术专项 (2022YFC2401900) 
评论 (0条)
注册 登录
时间排序
- 时间排序
暂无评论,发表第一条评论抢沙发
最新推荐
更多
中国心力衰竭诊断和治疗指南2024
中华医学会心血管病学分会 等 中华心血管病杂志 2024,52(03)
中国多发性骨髓瘤诊治指南(2022年修订)
中国医师协会血液科医师分会 等 中华内科杂志 2022,61(05)
慢性乙型肝炎防治指南(2022年版)
中华医学会肝病学分会 等 中华肝脏病杂志 2022,30(12)
中国成人高血压流行病学现状
赵冬 中国心血管杂志 2020,25(06)
分享
详细信息
表
访问与引文
阅读权限
参考文献
访问与引用
访问数据
0
0
全部时间 最近30天 最近6个月 最近12个月
MedAI助手(体验版)
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照
文献快照
N/A
N/A
AI总结中

N/A
N/A
快照内容由人工智能生成,供您参考。

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。
0/50
很抱歉,当前对话已达到其限制。
使用"新建对话"按钮开启更多对话。
停止回答
0/2000
信息反馈
中文(简体)
英文
翻译
机器翻译功能由科大讯飞提供技术支持
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。

你好! 今天我能为您提供什么帮助?
0/30
of
很抱歉,当前对话已达到其限制。
使用"新建对话"按钮开启更多对话。
停止回答
扩写 缩写 改写 翻译
0/2000
信息反馈
历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号
小中大
翻译
润色
扩写
缩写
复制
引用