专家论坛
基于5G和人工智能构建智能化院外心脏骤停急救系统
李志强
韩雪钰
吕菁君
沈波
作者及单位信息
·
DOI: 10.3760/cma.j.issn.1671-0282.2025.01.002
281
73
0
0
2
0
PDF下载
APP内阅读
摘要

心脏骤停是一种严重威胁生命的急症,每年造成全球数百万人直接死亡,其中,约有80%发生医院以外,又称为院外心脏骤停(out-of-hospital cardiac arrest,OHCA) [1]。我国医疗资源分布不均衡,发生OHCA的患者抢救出院存活率不足1%,能够恢复良好神经功能的患者更是少之又少 [2]。OHCA高病死率与急救链的各个环节密切相关,包括识别延迟、现场急救启动不足、心肺复苏(cardiopulmonary resuscitation, CPR)质量不高、自动体外除颤器(automated external defibrillator, AED)使用率低以及院前与院内医疗服务衔接不畅等 [3]

引用本文

李志强,韩雪钰,吕菁君,等. 基于5G和人工智能构建智能化院外心脏骤停急救系统[J]. 中华急诊医学杂志,2025,34(01):6-11.

DOI:10.3760/cma.j.issn.1671-0282.2025.01.002

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
心脏骤停是一种严重威胁生命的急症,每年造成全球数百万人直接死亡,其中,约有80%发生医院以外,又称为院外心脏骤停(out-of-hospital cardiac arrest,OHCA) [ 1 ]。我国医疗资源分布不均衡,发生OHCA的患者抢救出院存活率不足1%,能够恢复良好神经功能的患者更是少之又少 [ 2 ]。OHCA高病死率与急救链的各个环节密切相关,包括识别延迟、现场急救启动不足、心肺复苏(cardiopulmonary resuscitation, CPR)质量不高、自动体外除颤器(automated external defibrillator, AED)使用率低以及院前与院内医疗服务衔接不畅等 [ 3 ]
近年来,随着人工智能(artificial intelligence, AI)和互联网技术的快速发展,为构建更高效、更智能的院前急救系统提供了前所未有的机遇。这些新兴技术不仅能够提升OHCA的早期识别和预警能力,还能优化急救流程,提高急救人员的工作效率,并促进院前与院内医疗信息共享与协同,最终有望显著改善OHCA患者的预后 [ 4 ]。5G通信与AI技术在院前急救领域的融合发展与创新应用,可以对患者做到实时监控、早期发现、提供策略应对,为OHCA患者提供更及时、更精准、更高效的救治。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Myat A , Song KJ , Rea T . Out-of-hospital cardiac arrest: current concepts[J]. Lancet, 2018,391(10124):970-979. DOI: 10.1016/S0140-6736(18)30472-0 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Xie X , Zheng JQ , Zheng W ,et al. Efforts to improve survival outcomes of out-of-hospital cardiac arrest in China: basic-OHCA[J]. Circ Cardiovasc Qual Outcomes, 2023,16(2):e008856. DOI: 10.1161/CIRCOUTCOMES.121.008856 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Meaney PA , Bobrow BJ , Mancini ME ,et al. Cardiopulmonary resuscitation quality: improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American heart association[J]. Circulation, 2013,128(4):417-435. DOI: 10.1161/CIR.0b013e31829d8654 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Plodr M , Chalusova E . Current trends in the management of out of hospital cardiac arrest (OHCA)[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2024,168(2):105-116. DOI: 10.5507/bp.2024.006 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Armoundas AA , Ahmad FS , Bennett DA ,et al. Data interoperability for ambulatory monitoring of cardiovascular disease: a scientific statement from the American heart association[J]. Circ Genom Precis Med, 2024,17(3):e000095. DOI: 10.1161/HCG.0000000000000095 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Perez MV , Mahaffey KW , Hedlin H ,et al. Large-scale assessment of a smartwatch to identify atrial fibrillation[J]. N Engl J Med, 2019,381(20):1909-1917. DOI: 10.1056/NEJMoa1901183 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Krittanawong C , Rogers AJ , Johnson KW ,et al. Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management[J]. Nat Rev Cardiol, 2021,18(2):75-91. DOI: 10.1038/s41569-020-00445-9 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Khundaqji H , Hing W , Furness J ,et al. Smart shirts for monitoring physiological parameters: scoping review[J]. JMIR Mhealth Uhealth, 2020,8(5):e18092. DOI: 10.2196/18092 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Chen GR , Au C , Chen J . Textile triboelectric nanogenerators for wearable pulse wave monitoring[J]. Trends Biotechnol, 2021,39(10):1078-1092. DOI: 10.1016/j.tibtech.2020.12.011 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Fang YS , Zou YJ , Xu J ,et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor[J]. Adv Mater, 2021,33(41):e2104178. DOI: 10.1002/adma.202104178 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Lou MN , Abdalla I , Zhu MM ,et al. Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring[J]. ACS Appl Mater Interfaces, 2020,12(17):19965-19973. DOI: 10.1021/acsami.0c03670 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
陈峰. 可穿戴设备心率监测预警在院前心肺复苏急救中的应用研究[D]. 汕头:汕头大学, 2022. DOI: 10.27295/d.cnki.gstou.2022.000388 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Scquizzato T , Semeraro F . No more unwitnessed out-of-hospital cardiac arrests in the future thanks to technology[J]. Resuscitation, 2022,170:79-81. DOI: 10.1016/j.resuscitation.2021.11.010 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Sarkisian L , Mickley H , Schakow H ,et al. Global positioning system alerted volunteer first responders arrive before emergency medical services in more than four out of five emergency calls[J]. Resuscitation, 2020,152:170-176. DOI: 10.1016/j.resuscitation.2019.12.010 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Darginavicius L , Vencloviene J , Dobozinskas P ,et al. AI-enabled public surveillance cameras for rapid emergency medical service activation in out-of-hospital cardiac arrests[J]. Curr Probl Cardiol, 2023,48(11):101915. DOI: 10.1016/j.cpcardiol.2023.101915 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Douma MJ . Automated video surveillance and machine learning: leveraging existing infrastructure for cardiac arrest detection and emergency response activation[J]. Resuscitation, 2018,126:e3. DOI: 10.1016/j.resuscitation.2018.02.010 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Scquizzato T . Cardiac arrest detection through artificial intelligence-based surveillance camera: a working prototype[J]. Resuscitation, 2018,130:e114. DOI: 10.1016/j.resuscitation.2018.07.239 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Chan J , Rea T , Gollakota S ,et al. Contactless cardiac arrest detection using smart devices[J]. NPJ Digit Med, 2019,2:52. DOI: 10.1038/s41746-019-0128-7 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Rafi S , Gangloff C , Paulhet E ,et al. Out-of-hospital cardiac arrest detection by machine learning based on the phonetic characteristics of the caller’s voice[J]. Stud Health Technol Inform, 2022,294:445-449. DOI: 10.3233/SHTI220498 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Blomberg SN , Folke F , Ersbøll AK ,et al. Machine learning as a supportive tool to recognize cardiac arrest in emergency calls[J]. Resuscitation, 2019,138:322-329. DOI: 10.1016/j.resuscitation.2019.01.015 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Chin KC , Hsieh TC , Chiang WC ,et al. Early recognition of a caller’s emotion in out-of-hospital cardiac arrest dispatching: an artificial intelligence approach[J]. Resuscitation, 2021,167:144-150. DOI: 10.1016/j.resuscitation.2021.08.032 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Linderoth G , Lippert F , Østergaard D ,et al. Live video from bystanders’ smartphones to medical dispatchers in real emergencies[J]. BMC Emerg Med, 2021,21(1):101. DOI: 10.1186/s12873-021-00493-5 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Andelius L , Malta Hansen C , Lippert FK ,et al. Smartphone activation of citizen responders to facilitate defibrillation in out-of-hospital cardiac arrest[J]. J Am Coll Cardiol, 2020,76(1):43-53. DOI: 10.1016/j.jacc.2020.04.073 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Kurz MC , Bobrow BJ , Buckingham J ,et al. Telecommunicator cardiopulmonary resuscitation: a policy statement from the American Heart Association[J]. Circulation, 2020,141(12):e686-e700. DOI: 10.1161/CIR.0000000000000744 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Müller MP , Metelmann C , Thies KC ,et al. Reporting standard for describing first responder systems, smartphone alerting systems, and AED networks[J]. Resuscitation, 2024,195:110087. DOI: 10.1016/j.resuscitation.2023.110087 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Smida T , Salerno J , Weiss L ,et al. PulsePoint dispatch associated patient characteristics and prehospital outcomes in a mid-sized metropolitan area[J]. Resuscitation, 2022,170:36-43. DOI: 10.1016/j.resuscitation.2021.11.007 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Scquizzato T , Pallanch O , Belletti A ,et al. Enhancing citizens response to out-of-hospital cardiac arrest: a systematic review of mobile-phone systems to alert citizens as first responders[J]. Resuscitation, 2020,152:16-25. DOI: 10.1016/j.resuscitation.2020.05.006 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
<x>Mül</x> <x>ler</x> MP , Jonsson M , Böttiger BW ,et al. Telephone cardiopulmonary resuscitation, first responder systems, cardiac arrest centers, and global campaigns to save lives[J]. Curr Opin Crit Care, 2023,29(6):621-627. DOI: 10.1097/MCC.0000000000001112 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Scquizzato T , Gamberini L , Semeraro F . How technology can save lives in cardiac arrest[J]. Curr Opin Crit Care, 2022,28(3):250-255. DOI: 10.1097/MCC.0000000000000930 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Ringh M , Rosenqvist M , Hollenberg J ,et al. Mobile-phone dispatch of laypersons for CPR in out-of-hospital cardiac arrest[J]. N Engl J Med, 2015,372(24):2316-2325. DOI: 10.1056/NEJMoa1406038 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Ahn S , Jung S , Park JH ,et al. Artificial intelligence for predicting shockable rhythm during cardiopulmonary resuscitation: in-hospital setting[J]. Resuscitation, 2024,202:110325. DOI: 10.1016/j.resuscitation.2024.110325 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Hajeb-M S , Cascella A , Valentine M ,et al. Deep neural network approach for continuous ECG-based automated external defibrillator shock advisory system during cardiopulmonary re suscitation [J]. J Am Heart Assoc, 2021,10(6):e019065. DOI: 10.1161/JAHA.120.019065 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Isasi I , Irusta U , Aramendi E ,et al. Rhythm analysis during cardiopulmonary resuscitation using convolutional neural networks[J]. Entropy, 2020,22(6):595. DOI: 10.3390/e22060595 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Shen CP , Freed BC , Walter DP ,et al. Convolution neural network algorithm for shockable arrhythmia classification within a digitally connected automated external defibrillator[J]. J Am Heart Assoc, 2023,12(8):e026974. DOI: 10.1161/JAHA.122.026974 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Ristagno G , Scapigliati A , Semeraro F . Predicting shockable rhythms during chest compression with artificial intelligence: a winning bet?[J]. Resuscitation, 2024,202:110346. DOI: 10.1016/j.resuscitation.2024.110346 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Homma PCM , de Graaf C , Tan HL ,et al. Transfer of essential AED information to treating hospital (TREAT)[J]. Resuscitation, 2020,149:47-52. DOI: 10.1016/j.resuscitation.2020.01.033 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Nordseth T , Eftestøl T , Aramendi E ,et al. Extracting physiologic and clinical data from defibrillators for research purposes to improve treatment for patients in cardiac arrest[J]. Resusc Plus, 2024,18:100611. DOI: 10.1016/j.resplu.2024.100611 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Engan K , Hinna T , Ryen T ,et al. Chest compression rate measurement from smartphone video[J]. Biomed Eng Online, 2016,15(1):95. DOI: 10.1186/s12938-016-0218-6 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Meinich-Bache Ø , Engan K , Birkenes TS ,et al. Real-time chest compression quality measurements by smartphone camera[J]. J Healthc Eng, 2018,2018:6241856. DOI: 10.1155/2018/6241856 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Stipulante S , Delfosse AS , Donneau AF ,et al. Interactive videoconferencing versus audio telephone calls for dispatcher-assisted cardiopulmonary resuscitation using the ALERT algorithm: a randomized trial[J]. Eur J Emerg Med, 2016,23(6):418-424. DOI: 10.1097/MEJ.0000000000000338 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Olasveengen TM , Mancini ME , Perkins GD ,et al. Adult basic life support: international consensus on car diopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations [J]. Resuscitation, 2020,156:A35-A79. DOI: 10.1016/j.resuscitation.2020.09.010 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Park JU , Kang DW , Erdenebayar U ,et al. Estimation of arterial blood pressure based on artificial intelligence using single earlobe photoplethysmography during cardiopulmonary resuscitation[J]. J Med Syst, 2019,44(1):18. DOI: 10.1007/s10916-019-1514-z .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Liu ZD , Li Y , Zhang YT ,et al. Cuffless blood pressure measurement using smartwatches: a large-scale validation study[J]. IEEE J Biomed Health Inform, 2023,27(9):4216-4227. DOI: 10.1109/JBHI.2023.3278168 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Liu ZD , Li Y , Zhang YT ,et al. HGCTNet: handcrafted feature-guided CNN and transformer network for wearable cuffless blood pressure measurement[J]. IEEE J Biomed Health Inform, 2024,28(7):3882-3894. DOI: 10.1109/JBHI.2024.3395445 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Jiang LJ , Chen SX , Pan X ,et al. Estimation of invasive coronary perfusion pressure using electrocardiogram and Photoplethysmography in a porcine model of cardiac arrest[J]. Comput Methods Programs Biomed, 2024,254:108284. DOI: 10.1016/j.cmpb.2024.108284 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Kim TH , Kim H , Hong KJ ,et al. Prediction of cerebral perfusion pressure during CPR using electroencephalogram in a swine model of ventricular fibrillation[J]. Am J Emerg Med, 2021,45:137-143. DOI: 10.1016/j.ajem.2021.02.051 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Byrsell F , Jonsson M , Claesson A ,et al. Swedish emergency medical dispatch centres’ ability to answer emergency medical calls and dispatch an ambulance in response to out-of-hospital cardiac arrest calls in accordance with the American Heart Association performance goals: an observational study[J]. Resuscitation, 2023,189:109896. DOI: 10.1016/j.resuscitation.2023.109896 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Yap J , Helmer J , Gessaroli M ,et al. Performance of the medical priority dispatch system in correctly classifying out-of-hospital cardiac arrests as appropriate for resuscitation[J]. Resuscitation, 2022,181:123-131. DOI: 10.1016/j.resuscitation.2022.11.001 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
McKenzie N , Williams TA , Ho KM ,et al. Direct transport to a PCI-capable hospital is associated with improved survival after adult out-of-hospital cardiac arrest of medical aetiology[J]. Resuscitation, 2018,128:76-82. DOI: 10.1016/j.resuscitation.2018.04.039 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Rogers H , Madathil KC , Agnisarman S ,et al. A systematic review of the implementation challenges of telemedicine systems in ambulances[J]. Telemed J E Health, 2017,23(9):707-717. DOI: 10.1089/tmj.2016.0248 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Cournoyer A , Notebaert é , de Montigny L ,et al. Potential impact of a prehospital redirection system for refractory cardiac arrest[J]. Resuscitation, 2017,119:37-42. DOI: 10.1016/j.resuscitation.2017.08.001 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Salman OH , Taha Z , Alsabah MQ ,et al. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work[J]. Comput Methods Programs Biomed, 2021,209:106357. DOI: 10.1016/j.cmpb.2021.106357 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Hameed K , Bajwa IS , Sarwar N ,et al. Integration of 5G and block-chain technologies in smart telemedicine using IoT[J]. J Healthc Eng, 2021,2021:8814364. DOI: 10.1155/2021/8814364 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Krittanawong C , Rogers AJ , Aydar M ,et al. Integrating blockchain technology with artificial intelligence for cardiovascular medicine[J]. Nat Rev Cardiol, 2020,17(1):1-3. DOI: 10.1038/s41569-019-0294-y .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Miller DD . Machine intelligence in cardiovascular medicine[J]. Cardiol Rev, 2020,28(2):53-64. DOI: 10.1097/CRD.0000000000000294 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
Berlet M , Vogel T , Gharba M ,et al. Emergency telemedicine mobile ultrasounds using a 5G-enabled application: development and usability study[J]. JMIR Form Res, 2022,6(5):e36824. DOI: 10.2196/36824 .
返回引文位置Google Scholar
百度学术
万方数据
[57]
Mammas CS , Mamma AS . Remote monitoring, AI, machine learning and mobile ultrasound integration upon 5G Internet in the prehospital care to support the golden hour principle and optimize outcomes in severe trauma and emergency surgery[J]. Stud Health Technol Inform, 2024,316:1807-1811. DOI: 10.3233/SHTI240782 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
吕菁君,Email: nc.defudabe.uhwnujgnijvl
B
沈波,Email: mocdef.6ab21xdhwobnehs
C

李志强和韩雪钰为共同第一作者

D
所有作者声明无利益冲突
E
湖北省重点研发计划 (2023BCB017)
国家重点研发计划主动健康和人口老龄化科技应对专项 (2023YFC3604700)
国家重点研发计划诊疗装备与生物医用技术专项 (2022YFC2401900)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号