随着CT成像越来越多地用于肺结节评估以及吸烟者肺癌的诊断和筛查,我们有更多机会使用CT图像来识别早期慢性阻塞性肺疾病(简称慢阻肺病)患者。此外,随着人工智能的不断发展,不仅能够通过对患者肺部CT的分析帮助临床医师对慢阻肺病患者的早诊早治,也能够对治疗方案进行指导。本文主要对人工智能结合CT影像组学在慢阻肺病诊疗中的应用进行综述。
As CT imaging is increasingly used for the evaluation of lung nodules and the diagnosis and screening of lung cancer in smokers, we have more opportunities to use CT images to identify patients with early-stage chronic obstructive pulmonary disease(COPD). Furthermore, with the continuous advancement of artificial intelligence, it can not only assist clinicians in the early diagnosis and treatment of COPD patients through the analysis of lung CT scans but also help guide treatment strategies. This article primarily reviewed the application of artificial intelligence combined with CT radiomics in the diagnosis and treatment of chronic obstructive pulmonary disease.
王若雨,孙伟,罗祖金,等. 人工智能结合CT影像组学在慢性阻塞性肺疾病中的应用[J]. 中华结核和呼吸杂志,2025,48(02):186-190.
DOI:10.3760/cma.j.cn112147-20240830-00517版权归中华医学会所有。
未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。