综述
ENGLISH ABSTRACT
光谱学技术在皮肤恶性肿瘤诊断中的研究进展
赵舒文
张景展
康晓静
作者及单位信息
·
DOI: 10.3760/cma.j.cn321828-20240125-00036
Research progress of spectroscopic techniques in the diagnosis of skin malignant tumors
Zhao Shuwen
Zhang Jingzhan
Kang Xiaojing
Authors Info & Affiliations
Zhao Shuwen
Graduate School of Xinjiang Medical University, Urumqi 830001, China
Zhang Jingzhan
Dermatology and Venereology Medical Diagnosis and Treatment Center, People′s Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Clinical Research Center for Dermatology and Venereology; Xinjiang Key Laboratory of Dermatology Research, Urumqi 830001, China
Kang Xiaojing
Dermatology and Venereology Medical Diagnosis and Treatment Center, People′s Hospital of Xinjiang Uygur Autonomous Region; Xinjiang Clinical Research Center for Dermatology and Venereology; Xinjiang Key Laboratory of Dermatology Research, Urumqi 830001, China
·
DOI: 10.3760/cma.j.cn321828-20240125-00036
65
15
0
0
0
0
PDF下载
APP内阅读
摘要

皮肤恶性肿瘤多发生在光暴露部位。早期诊断并治疗可有效提高患者的生存率。组织病理学检查是临床诊断皮肤恶性肿瘤的"金标准",但该检查是一种侵入性操作,耗时较长且可能出现切口感染、瘢痕形成等风险。近年来,光谱学技术迅速发展,光谱学检测具有非侵入、操作简便、实时检测、高灵敏度等特点,已逐渐应用于皮肤恶性肿瘤的辅助诊断中。该文综述荧光光谱、拉曼光谱、红外光谱等光谱学技术在皮肤恶性肿瘤诊断中的最新研究进展。

皮肤肿瘤;光谱法,荧光;光谱分析,拉曼;谱学,近红外线;发展趋势
ABSTRACT

Skin malignant tumors mostly occur in the light exposure site. Early diagnosis and treatment can effectively improve the survival rate of patients. Histopathological examination is the gold standard for clinical diagnosis of skin malignant tumors, but this method is an invasive operation which brings pain to patients and takes a long time, and may cause problems such as incision infection and scar formation. In recent years, spectroscopy technology has developed rapidly. It is a non-invasive real-time detection method, which can be simply operated, and has a high sensitivity. It has been gradually applied to the diagnosis of skin malignant tumors. This paper reviews the application progress of spectroscopy technology, including fluorescence spectroscopy, Raman spectroscopy and infrared spectroscopy in the diagnosis of skin malignant tumors.

Skin neoplasms;Spectrometry, fluorescence;Spectrum analysis, Raman;Spectroscopy, near-infrared;Trends
Kang Xiaojing, Email: mocdef.3ab61666jxgnakrd
引用本文

赵舒文,张景展,康晓静. 光谱学技术在皮肤恶性肿瘤诊断中的研究进展[J]. 中华核医学与分子影像杂志,2025,45(02):125-128.

DOI:10.3760/cma.j.cn321828-20240125-00036

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
皮肤恶性肿瘤是常见的恶性肿瘤之一,主要包括基底细胞癌(basal cell carcinoma, BCC)、鳞状细胞癌(squamous cell carcinoma, SCC)、恶性黑色素瘤(malignant melanoma, MM)等 [ 1 ]。皮肤组织病理是诊断皮肤恶性肿瘤的"金标准",但是皮肤组织病理检查操作流程复杂,基层医院难以开展,同时具有滞后性和有创性,不利于病情实时监测。多种非侵入性成像方法如皮肤镜、皮肤超声等已被应用到皮肤肿瘤的辅助诊断,但检查结果主观性强,在很大程度上依赖于医师的专业技术水平,特别是对于缺乏显著特征的早期皮肤肿瘤,误诊、漏诊率高 [ 2 ]
近年来光谱学技术迅速发展,已逐渐应用于皮肤肿瘤的检测中 [ 3 ]。光谱学技术可利用细胞和组织的荧光、散射和吸收特性,收集和处理皮肤组织多个位置生物标志物的光谱信息,进行定性、定量和结构分析,有效鉴别恶性肿瘤、癌前病变和良性病理变化特征,从而有助于皮肤肿瘤的监测、诊断、手术边界评价、治疗及术后评估。同时,光谱技术属无创检测,操作便捷,可以更方便地应用于临床。本文对目前光谱学技术在皮肤肿瘤领域研究的最新进展进行综述,以期为皮肤肿瘤早期诊断及相关设备的研发提供参考。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Linares MA , Zakaria A , Nizran P . Skin Cancer[J]. Prim Care, 2015,42(4):645-659. DOI: 10.1016/j.pop.2015.07.006 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Abu Owida H . Biomimetic nanoscale materials for skin cancer therapy and detection[J]. J Skin Cancer, 2022,2022:2961996. DOI: 10.1155/2022/2961996 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Traynor D , Behl I , O′Dea D ,et al. Raman spectral cytopathology for cancer diagnostic applications[J]. Nat Protoc, 2021,16(7):3716-3735. DOI: 10.1038/s41596-021-00559-5 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Sanderson MJ , Smith I , Parker I ,et al. Fluorescence microscopy[J]. Cold Spring Harb Protoc, 2014,2014(10):pdb.top071795. DOI: 10.1101/pdb.top071795 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Giovannacci I , Meleti M , Garbarino F ,et al. Correlation between autofluorescence intensity and histopathological features in non-melanoma skin cancer: an ex vivo study [J]. Cancers (Basel), 2021,13(16):3974. DOI: 10.3390/cancers13163974 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Hobson CM , Aaron JS . Combining multiple fluorescence imaging techniques in biology: when one microscope is not enough[J]. Mol Biol Cell, 2022,33(6):tp1. DOI: 10.1091/mbc.E21-10-0506 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Lai Y , Wu Y , Liu R ,et al. Four-color fluorescence in-situ hybridization is useful to assist to distinguish early stage acral and cutaneous melanomas from dysplastic junctional or compound nevus[J]. Diagn Pathol, 202015(1):51. DOI: 10.1186/s13000-020-00937-9 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Ching-Roa VD , Huang CZ , Ibrahim SF ,et al. Real-time analysis of skin biopsy specimens with 2-photon fluorescence microscopy[J]. JAMA Dermatol, 2022,158(10):1175-1182. DOI: 10.1001/jamadermatol.2022.3628 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Pérez-Anker J , Ribero S , Yélamos O ,et al. Basal cell carcinoma characterization using fusion ex vivo confocal microscopy: a promising change in conventional skin histopathology [J]. Br J Dermatol, 2020,182(2):468-476. DOI: 10.1111/bjd.18239 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Romano RA , Teixeira Rosa RG , Salvio AG ,et al. Multispectral autofluorescence dermoscope for skin lesion assessment[J]. Photodiagnosis Photodyn Ther, 2020,30:101704. DOI: 10.1016/j.pdpdt.2020.101704 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Vonk J , de Wit JG , Voskuil FJ ,et al. Fluorescence molecular imagin g using cetuximab-800CW in cutaneous squamous cell carcinoma surgery: a proof-of-concept study [J]. Br J Dermatol, 2022,187(5):810-812. DOI: 10.1111/bjd.21722 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
周清清郭景星许晴拉曼光谱在脑胶质瘤诊疗中的研究与应用[J]. 中华核医学与分子影像杂志 2023,43(9):566-570. DOI: 10.3760/cma.j.cn321828-20220507-00144 .
返回引文位置Google Scholar
百度学术
万方数据
Zhou QQ , Guo JX , Xu Q ,et al. Research and application of Raman spectroscopy in the diagnosis and therapy of brain glioma[J]. Chin J Nucl Med Mol Imaging, 2023,43(9):566-570. DOI: 10.3760/cma.j.cn321828-20220507-00144 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[13]
Shen Y , Yue J , Xu W ,et al. Recent progress of surface-enhanced Raman spectroscopy for subcellular compartment analysis[J]. Theranostics, 2021,11(10):4872-4893. DOI: 10.7150/thno.56409 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Feng X , Fox MC , Reichenberg JS ,et al. Biophysical basis of skin cancer margin assessment using Raman spectroscopy[J]. Biomed Opt Express, 2019,10(1):104-118. DOI: 10.1364/BOE.10.000104 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Kourkoumelis N , Balatsoukas I , Moulia V ,et al. Advances in the in vivo Raman spectroscopy of malignant skin tumors using portable instrumentation [J]. Int J Mol Sci, 2015,16(7):14554-14570. DOI: 10.3390/ijms160714554 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Vardaki MZ , Pavlou E , Simantiris N ,et al. Towards non-invasive monitoring of non-melanoma skin cancer using spatially offset Raman spectroscopy[J]. Analyst, 2023,148(18):4386-4395. DOI: 10.1039/d3an00684k .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Dey P , Vaideanu A , Mosca S ,et al. Surface enhanced deep Raman detection of cancer tumour through 71 mm of heterogeneous tissue[J]. Nanotheranostics, 2022,6(3):337-349. DOI: 10.7150/ntno.71510 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Bratchenko IA , Bratchenko LA , Moryatov AA ,et al. In vivo diagnosis of skin cancer with a portable Raman spectroscopic device [J]. Exp Dermatol, 2021,30(5):652-663. DOI: 10.1111/exd.14301 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Ruiz JJ , Marro M , Galván I ,et al. Novel non-invasive quantification and imaging of eumelanin and DHICA subunit in skin lesions by Raman spectroscopy and MCR algorithm: improving dysplastic nevi diagnosis[J]. Cancers (Basel), 2022,14(4):1056. DOI: 10.3390/cancers14041056 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Lizio MG , Boitor R , Notingher I . Selective-sampling Raman imaging techniques for ex vivo assessment of surgical margins in cancer surgery [J]. Analyst, 2021,146(12):3799-3809. DOI: 10.1039/d1an00296a .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Qiu X , He T , Wu X ,et al. Combining fiber optical tweezers and Raman spectroscopy for rapid identification of melanoma[J]. J Biophotonics, 2022,15(12):e202200158. DOI: 10.1002/jbio.202200158 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Kwiatek S , Kawczyk-Krupka A , Mańka E ,et al. Can fluorescence and autofluorescence imaging be useful in diagnosis of basal cell cancer? Proposition of algorithms[J]. Photodiagnosis Photodyn Ther, 2020,30:101697. DOI: 10.1016/j.pdpdt.2020.101697 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
桂斌姜楠邓倾近红外二区荧光成像在肿瘤诊疗中的研究进展[J]. 中华核医学与分子影像杂志 2024,44(2):120-123. DOI: 10.3760/cma.j.cn321828-20221019-00314 .
返回引文位置Google Scholar
百度学术
万方数据
Gui B , Jiang N , Deng Q . Research progress of near-infrared Ⅱ fluorescence imaging in the diagnosis and treatment of tumors[J]. Chin J Nucl Med Mol Imaging, 2024,44(2):120-123. DOI: 10.3760/cma.j.cn321828-20221019-00314 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[24]
Peñaranda F , Naranjo V , Lloyd GR ,et al. Discrimination of skin cancer cells using Fourier transform infrared spectroscopy[J]. Comput Biol Med, 2018,100:50-61. DOI: 10.1016/j.compbiomed.2018.06.023 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Spreinat A , Selvaggio G , Erpenbeck L ,et al. Multispectral near infrared absorption imaging for histology of skin cancer[J]. J Biophotonics, 2020,13(1):e201960080. DOI: 10.1002/jbio.201960080 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Seoni S , Meiburger KM , Veronese F ,et al. Non-invasive analysis of actinic keratosis using a cold stimulation and near-infrared spectroscopy[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019,2019:467-470. DOI: 10.1109/EMBC.2019.8857279 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Shakya BR , Teppo HR , Rieppo L . Discrimination of melanoma cell lines with Fourier transform infrared (FTIR) spectroscopy[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2021,254:119665. DOI: 10.1016/j.saa.2021.119665 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Kyriakidou M , Anastassopoulou J , Tsakiris A ,et al. FT-IR spectroscopy study in early diagnosis of skin cancer[J]. In Vivo , 2017,31(6):1131-1137. DOI: 10.21873/invivo.11179 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Hill WF , Webb C , Monument M ,et al. Intraoperative near-infrared spectroscopy correlates with skin flap necrosis: a prospective cohort study[J]. Plast Reconstr Surg Glob Open, 2020,8(4):e2742. DOI: 10.1097/GOX.0000000000002742 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Calin MA , Parasca SV . Automatic detection of basal cell carcinoma by hyperspectral imaging[J]. J Biophotonics, 2022,15(1):e202100231. DOI: 10.1002/jbio.202100231 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Shirkavand A , Farivar S , Mohajerani E ,et al. Non-invasive reflectance spectroscopy for normal and cancerous skin cells refractive index determination: an in vitro study [J]. Lasers Surg Med, 2019,51(8):742-750. DOI: 10.1002/lsm.23095 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Zhang M , Wen L , Zhou C ,et al. Identification of different types of tumors based on photoacoustic spectral analysis: preclinical feasibility studies on skin tumors[J]. J Biomed Opt, 2023,28(6):065004. DOI: 10.1117/1.JBO.28.6.065004 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
陈笑于建渤陈亮光声成像在乳腺癌诊断中的临床研究进展[J]. 中华核医学与分子影像杂志 2023,43(10):631-635. DOI: 10.3760/cma.j.cn321828-20220519-00165
返回引文位置Google Scholar
百度学术
万方数据
Chen X , Yu JB , Chen L Advances in clinical research of photoacoustic imaging in the diagnosis of breast cancer[J]. Chin J Nucl Med Mol Imaging, 2023,43(10):631-635. DOI: 10.3760/cma.j.cn321828-20220519-00165 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[34]
Yan Z , Zhu LG , Meng K ,et al. THz medical imaging: from in vitro to in vivo [J]. Trends Biotechnol, 2022,40(7):816-830. DOI: 10.1016/j.tibtech.2021.12.002 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Zhang Y , Moy AJ , Feng X ,et al. Physiological model using diffuse reflectance spectroscopy for nonmelanoma skin cancer diagnosis[J]. J Biophotonics, 2019,12(12):e201900154. DOI: 10.1002/jbio.201900154 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Bozsányi S , Farkas K , Bánvölgyi A ,et al. Quantitative multispectral imaging differentiates melanoma from seborrheic keratosis[J]. Diagnostics (Basel), 2021,11(8):1315. DOI: 10.3390/diagnostics11081315 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Wang P , Yang W , Shen S ,et al. Differential diagnosis and precision therapy of two typical malignant cutaneous tumors leveraging their tumor microenvironment: a photomedicine strategy[J]. ACS Nano, 2019,13(10):11168-11180. DOI: 10.1021/acsnano.9b04070 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Stridh MT , Hult J , Merdasa A ,et al. Photoacoustic imaging of periorbital skin cancer ex vivo: unique spectral signatures of malignant melanoma, basal, and squamous cell carcinoma [J]. Biomed Opt Express, 2022,13(1):410-425. DOI: 10.1364/BOE.443699 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
He H , Schönmann C , Schwarz M ,et al. Fast raster-scan optoacoustic mesoscopy enables assessment of human melanoma microvasculature in vivo [J]. Nat Commun, 2022,13(1):2803. DOI: 10.1038/s41467-022-30471-9 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Zare A , Shamshiripour P , Lotfi S ,et al. Clinical theranostic s applications of photo-acoustic imaging as a future prospect for cancer [J]. J Control Release, 2022,351:805-833. DOI: 10.1016/j.jconrel.2022.09.016 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
康晓静,Email: mocdef.3ab61666jxgnakrd
B

赵舒文:文献检索、论文撰写;张景展:论文修改;康晓静:研究指导、论文修改、经费支持

C
所有作者声明无利益冲突
D
新疆维吾尔自治区自然科学基金 (2022D01D23)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号