实验研究
ENGLISH ABSTRACT
关键期单眼形觉剥夺对小鼠初级视皮层NRG1 和NRG1 -的PV神经元分布密度的影响
叶京京
李新宇
凌颖
栾长霖
史学锋
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20231010-00123
Effect of monocular form deprivation during critical period on the density of NRG1 + and NRG1 - PV neurons in the mouse primary visual cortex
Ye Jingjing
Li Xinyu
Ling Ying
Luan Changlin
Shi Xuefeng
Authors Info & Affiliations
Ye Jingjing
Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin 300020, China
Ye Jingjing and Ling Ying are graduate students of Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
Li Xinyu
Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
Ling Ying
Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin 300020, China
Ye Jingjing and Ling Ying are graduate students of Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
Luan Changlin
Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
Shi Xuefeng
Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
·
DOI: 10.3760/cma.j.cn115989-20231010-00123
78
32
0
0
0
0
PDF下载
APP内阅读
摘要

目的探讨视觉发育关键期内单眼形觉剥夺(MD)对小鼠初级视皮层神经调节蛋白1(NRG1) 和NRG1 -的小清蛋白(PV)神经元分布密度的影响。

方法选取28日龄雄性SPF级C57BL/6J小鼠12只,采用随机数字表法分为MD组和对照组,每组6只,MD组于出生后第28天(P28)时行右眼MD,饲养至P32,对照组常规饲养至P32,所有小鼠均心脏灌注后断颈处死并迅速取出脑组织,固定过夜后切取视皮层组织,并进行PV和NRG1免疫荧光染色,分别观察并比较MD组小鼠两侧以及对照组小鼠初级视皮层PV 、PV /NRG1 和PV /NRG1 -神经元分布密度的差异。

结果免疫荧光染色结果显示,对照组、MD组对侧V1区和MD组同侧V1区PV 神经元密度分别为(137.8±4.3)、(108.8±4.1)和(137.4±4.0)/mm 2,PV /NRG1 神经元密度分别为(112.0±4.6)、(82.1±4.7)和(113.6±5.7)/mm 2,总体比较差异均有统计学意义( F=15.88、12.53,均 P<0.001),其中MD组对侧V1区PV 神经元密度和PV /NRG1 神经元密度明显低于对照组和MD组同侧V1区,差异均有统计学意义(均 P<0.001)。各组PV /NRG1 -神经元密度总体比较,差异无统计学意义( F=0.20, P>0.05)。

结论NRG1 的PV神经元可能是调控关键期初级视皮层发育的主要细胞类型。

视觉;关键期;初级视皮层;形觉剥夺;神经调节蛋白1;小清蛋白
ABSTRACT

ObjectiveTo investigate the effect of monocular form deprivation (MD) on the distribution density of neuregulin-1 (NRG1) + and NRG1 - parvalbumin (PV) neurons in the primary visual cortex of mice during the critical period of visual development.

MethodsTwelve healthy 28-day-old SPF male C57BL/6J mice were randomly divided into control group and MD group by the random number table method, with 6 mice in each group.After MD on postnatal day (P) 28, the MD group was fed until P32, while the control group was fed normally until P32.All mice were sacrificed by cervical dislocation after cardiac perfusion, and brain tissues were quickly collected.After fixation overnight, brain slices were subjected to PV and NRG1 immunofluorescence staining to observe and compare the differences in the distribution density of PV + , PV + /NRG1 + and PV + /NRG1 - neurons in both sides of the primary visual cortex (V1) area of the two groups.This study was conducted in accordance with the Regulations on the Administration of Experimental Animals (2017 Revision), and the study protocol was approved by the Institutional Animal Care and Use Committee of Tianjin Medical University (No.TMUaMEC2022004).

ResultsImmunofluorescence staining showed that the density of PV + and PV + /NRG1 + neurons was (137.8±4.3), (108.8±4.1), (137.4±4.0)/mm 2 in the contralateral V1 area of the control group, MD group and the ipsilateral V1 area of the MD group, and that of PV + /NRG1 + neurons was (112.0±4.6), (82.1±4.7) and (113.6±5.7)/mm 2, respectively, with statistically significant overall differences ( F=15.88, 12.53; both P<0.001).PV + neuron density and PV + /NRG1 + neuron density in the contralateral V1 area of the MD group were significantly lower than in the control group and in the ipsilateral V1 area of the MD group (all P<0.001).There was no difference in PV + /NRG1 - neuron density between the two groups ( F=0.20, P>0.05).

ConclusionsPV + /NRG1 + neurons may be the main cell type regulating the development of primary visual cortex during the critical period.

Vision, ocular;Critical period;Primary visual cortex;Form deprivation;Neuregulin-1;Parvalbumin
Shi Xuefeng, Email: mocdef.3ab61umt_fxihs
引用本文

叶京京,李新宇,凌颖,等. 关键期单眼形觉剥夺对小鼠初级视皮层NRG1 和NRG1 -的PV神经元分布密度的影响 [J]. 中华实验眼科杂志,2025,43(02):115-120.

DOI:10.3760/cma.j.cn115989-20231010-00123

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
本文评分
5 [累计1个]
视觉发育是视觉神经系统在胚胎期就拥有的结构和功能在出生后不断发育成熟的过程。双眼视觉功能发育存在关键期,关键期内异常视觉经验会引起单眼或双眼最佳矫正视力下降,从而导致弱视的发生 [ 1 ]。关键期内视觉神经系统具有高度的可塑性,视觉神经环路中神经元之间的突触连接会在外界因素,如视觉经验的影响下发生显著变化。初级视皮层(primary visual cortex,V1)的发育关键期为出生后第20~35天,此时视皮层的可塑性最强,其发育也最易受到视觉经验的调控 [ 2 ]。研究表明,单眼形觉剥夺(monocular form deprivation,MD)作为异常视觉经验在视觉发育的关键期会导致V1的一系列功能改变,包括神经元眼优势、空间敏锐度和双眼视功能等的变化 [ 3 , 4 , 5 , 6 , 7 , 8 ]
既往研究发现,V1发育关键期的开启和关闭受到γ-氨基丁酸(gamma-aminobutyric acid,GABA)能抑制性神经元的调控 [ 9 , 10 ],并且GABA是弱视发病机制中主要参与的中枢神经递质 [ 11 ],其影响视觉发育关键期V1突触可塑性形成的过程。小清蛋白(parvalbumin,PV)阳性抑制性神经元是GABA能抑制性中间神经元的主要亚型,广泛分布于外周和中枢神经系统中 [ 12 ]。此外,如果在视觉发育关键期进行MD,PV神经元会被迅速抑制,这是由于PV神经元的局部兴奋性输入减少,从而导致皮层去抑制,而这种抑制性中间神经元活动降低导致的皮层去抑制对调节关键期眼优势可塑性至关重要 [ 13 , 14 ]。研究发现,神经调节蛋白1(neuregulin-1,NRG1)可通过作用于视皮层中PV阳性抑制性神经元的受体酪氨酸蛋白激酶4(erb-b2 receptor tyrosine kinase-4,ErbB4)受体来调节视皮层的神经可塑性,且NRG1在视皮层发育的关键期呈高表达,成年后表达减弱,并且在视觉发育关键期MD会导致NRG1表达下降 [ 13 , 15 ],提示其可能是参与视觉发育关键期开启和关闭的关键分子。
本研究旨在通过观察视觉发育关键期内MD对小鼠V1区NRG1 和NRG1 -的PV神经元分布密度的影响,以期揭示调控关键期V1发育的关键细胞类型。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
中华医学会眼科学分会斜视与小儿眼科学组中国医师协会眼科医师分会斜视与小儿眼科学组中国儿童弱视防治专家共识(2021年)[J]. 中华眼科杂志 202157(5)∶336-340. DOI: 10.3760/cma.j.cn112142-20210109-00014 .
返回引文位置Google Scholar
百度学术
万方数据
Chinese Association for Pediatric Ophthalmology and StrabismusPediatric Ophthalmology and Strabismus Group of Chinese Ophthalmologist Association. Expert consensus on prevention and treatment of amblyopia in children[J]. Chin J Ophthalmol 202157(5)∶336-340. DOI: 10.3760/cma.j.cn112142-20210109-00014 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[2]
王珏张伟史学锋视皮层神经元结构可塑性研究进展[J]. 中华实验眼科杂志 202240(6)∶582-587. DOI: 10.3760/cma.j.cn115989-20200415-00263 .
返回引文位置Google Scholar
百度学术
万方数据
Wang Y Zhang W Shi XF . Research progress on the structural plasticity of neurons in the visual cortex[J]. Chin J Exp Ophthalmol 202240(6)∶582-587. DOI: 10.3760/cma.j.cn115989-20200415-00263 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[3]
Hao X Liu Q Chan J et al. Binocular visual experience drives the maturation of response variability and reliability in the visual cortex[J/OL]. iScience 202225(9)∶104984[2024-09-08]. https://pubmed.ncbi.nlm.nih.gov/36105593/. DOI: 10.1016/j.isci.2022.104984 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Hooks BM Chen C Circuitry underlying experience-dependent plasticity in the mouse visual system[J]. Neuron 2020106(1)∶21-36. DOI: 10.1016/j.neuron.2020.01.031 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Gordon JA Stryker MP . Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse[J]. J Neurosci 199616(10)∶3274-3286. DOI: 10.1523/JNEUROSCI.16-10-03274.1996 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Thompson B Concetta Morrone M Bex P et al. Harnessing brain plasticity to improve binocular vision in amblyopia:an evidence-based update[J]. Eur J Ophthalmol 202434(4)∶901-912. DOI: 10.1177/11206721231187426 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Cang J Fu J Tanabe S Neural circuits for binocular vision:ocular dominance,interocular matching,and disparity selectivity[J/OL]. Front Neural Circuits 2023171084027[2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/36874946/. DOI: 10.3389/fncir.2023.1084027 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Levine JN Chen H Gu Y et al. Environmental enrichment rescues binocular matching of orientation preference in the mouse visual cortex[J]. J Neurosci 201737(24)∶5822-5833. DOI: 10.1523/JNEUROSCI.3534-16.2017 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Priya R Rakela B Kaneko M et al. Vesicular GABA transporter is necessary for transplant-induced critical period plasticity in mouse visual cortex[J]. J Neurosci 201939(14)∶2635-2648. DOI: 10.1523/JNEUROSCI.1253-18.2019 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Fagiolini M Hensch TK . Inhibitory threshold for critical-period activation in primary visual cortex[J]. Nature 2000404(6774)∶183-186. DOI: 10.1038/35004582 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Mukerji A Byrne KN Yang E et al. Visual cortical γ-aminobutyric acid and perceptual suppression in amblyopia[J/OL]. Front Hum Neurosci 202216949395[2024-09-10]. http s://pubmed.ncbi.nlm.nih.gov/36118971/ . DOI: 10.3389/fnhum.2022.949395 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Hu H Gan J Jonas P Interneurons.Fast-spiking,parvalbumin GABAergic interneurons:from cellular design to microcircuit function [J/OL]. Science 2014345(6196)∶1255263[2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/25082707/. DOI: 10.1126/science.1255263 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Sun Y Ikrar T Davis MF et al. Neuregulin-1/ErbB4 signaling regulates visual cortical plasticity[J]. Neuron 201692(1)∶160-173. DOI: 10.1016/j.neuron.2016.08.033 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Kuhlman SJ Olivas ND Tring E et al. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex[J]. Nature 2013501(7468)∶543-546. DOI: 10.1038/nature12485 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Xu L Li Z Rong J et al. Effect of regulation of the NRG1/ErbB4 signaling pathway on the visual cortex synaptic plasticity of amblyopic adult rats[J/OL]. J Biochem Mol Toxicol 202135(9)∶e22841[2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/34273906/. DOI: 10.1002/jbt.22841 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Chan J Hao X Liu Q et al. Closing the critical period is required for the maturation of binocular integration in mouse primary visual cortex[J/OL]. Front Cell Neurosci 202115749265[2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/34899187/. DOI: 10.3389/fncel.2021.749265 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Rodarie D Verasztó C Roussel Y et al. A method to estimate the cellular composition of the mouse brain from heterogeneous datasets[J/OL]. PLoS Comput Biol 202218(12)∶e1010739[2024-09-11]. https://pubmed.ncbi.nlm.nih.gov/36542673/. DOI: 10.1371/journal.pcbi.1010739 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Znamenskiy P Kim MH Muir DR et al. Functional specificity of recurrent inhibition in visual cortex[J]. Neuron 2024112(6)∶991-1000. DOI: 10.1016/j.neuron.2023.12.013 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Xu X Roby KD Callaway EM . Immunochemical characterization of inhibitory mouse cortical neurons:three chemically distinct classes of inhibitory cells[J]. J Comp Neurol 2010518(3)∶389-404. DOI: 10.1002/cne.22229 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Hubel DH Wiesel TN . Receptive fields,binocular interaction and functional architecture in the cat ' s visual cortex [J]. J Physiol 1962160(1)∶106-154. DOI: 10.1113/jphysiol.1962.sp006837 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Hubel DH Wiesel TN . The period of susceptibility to the physiological effects of unilateral eye closure in kittens[J]. J Physiol 1970206(2)∶419-436. DOI: 10.1113/jphysiol.1970.sp009022 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Sigal YM Bae H Bogart LJ et al. Structural maturation of cortical perineuronal nets and their perforating synapses revealed by superresolution imaging[J]. Proc Natl Acad Sci U S A 2019116(14)∶7071-7076. DOI: 10.1073/pnas.1817222116 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Frantz MG Crouse EC Sokhadze G et al. Layer 4 gates plasticity in visual cortex independent of a canonical microcircuit[J]. Curr Biol 202030(15)∶2962-2973. DOI: 10.1016/j.cub.2020.05.067 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Hensch TK Quinlan EM . Critical periods in amblyopia[J/OL]. Vis Neurosci 201835E014[2024-09-13]. https://pubmed.ncbi.nlm.nih.gov/29905116/. DOI: 10.1017/S0952523817000219 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Birch EE Duffy KR . Leveraging neural plasticity for the treatment of amblyopia[J]. Surv Ophthalmol 202469(5)∶818-832. DOI: 10.1016/j.survophthal.2024.04.006 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Shi L Bergson CM . Neuregulin 1:an intriguing therapeutic target for neurodevelopmental disorders[J/OL]. Transl Psychiatry 202010(1)∶190[2024-09-13]. https://pubmed.ncbi.nlm.nih.gov/32546684/. DOI: 10.1038/s41398-020-00868-5 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Grieco SF Holmes TC Xu X Neuregulin directed molecular mechanisms of visual cortical plasticity[J]. J Comp Neurol 2019527(3)∶668-678. DOI: 10.1002/cne.24414 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Gu Y Tran T Murase S et al. Neuregulin-dependent regulation of fast-spiking interneuron excitability controls the timing of the critical period[J/OL]. J Neurosci 201636(40)∶10285-10295[2024-09-13]. https://pubmed.ncbi.nlm.nih.gov/27707966/. DOI: 10.1523/JNEUROSCI.4242-15.2016 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Ozaki M Itoh K Miyakawa Y et al. Protein processing and releases of neuregulin-1 are regulated in an activity-dependent manner[J]. J Neurochem 200491(1)∶176-188. DOI: 10.1111/j.1471-4159.2004.02719.x .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Zhang XQ Xu L Zhu XY et al. D-serine reconstitutes synaptic and intrinsic inhibitory control of pyramidal neurons in a neurodevelopmental mouse model for schizophrenia[J/OL]. Nat Commun 202314(1)∶8255[2024-09-13]. https://pubmed.ncbi.nlm.nih.gov/38086803/. DOI: 10.1038/s41467-023-43930-8 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
史学锋,Email: mocdef.3ab61umt_fxihs
B

叶京京:酝酿和设计实验、实施研究、采集数据、分析/解释数据、统计分析、起草及修改文章;李新宇:实施研究、分析/解释数据、统计分析;凌颖:分析/解释数据、统计分析、起草文章;栾长霖:实施研究、统计分析、起草文章;史学锋:酝酿和设计实验、分析/解释数据、指导研究、对文章的知识性内容作批评性审阅及定稿

C
所有作者均声明不存在利益冲突
D
国家自然科学基金 (81770956、81371049)
天津市131创新型人才团队项目 (201936)
天津市杰出青年科学基金 (17JCJQJC46000)
天津市自然科学基金 (21JCYBJC00780)
天津市卫生计生行业高层次人才选拔培养工程津门医学英才项目
天津市卫生健康科技项目 (TJWJ2023ZD008)
天津市医学重点学科(专科)建设项目 (TJYXZDXK-016A)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号