综述
ENGLISH ABSTRACT
Cx36在视网膜信号传导及近视进展中的作用研究进展
张浩
郭俊国 [综述]
毕宏生 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.cn115989-20220921-00440
Research progress on the role of Cx36 in retinal signal transduction and myopia progression
Zhang Hao
Guo Junguo
Bi Hongsheng
Authors Info & Affiliations
Zhang Hao
Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
Guo Junguo
Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
Bi Hongsheng
Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
Shandong Academy of Eye Disease Prevention and Therapy, Jinan 250002, China
·
DOI: 10.3760/cma.j.cn115989-20220921-00440
75
23
0
0
0
0
PDF下载
APP内阅读
摘要

视网膜是介导外界光信号转换为神经电信号的关键部位,缝隙连接蛋白(Cx)作为缝隙连接通道的基本结构和功能蛋白分子,在维持视网膜功能稳态中发挥重要作用。Cx36在视网膜信息传递以及生化因子调控等方面具有生理作用,并参与近视的形成过程。"局部视网膜-巩膜重塑"学说认为异常的视觉信息作用于视网膜,经视网膜色素上皮-脉络膜信号转导引起巩膜重塑,最终导致近视。探讨视网膜Cx36在视觉发育与近视形成中的作用及其机制,对近视防控具有重要的指导意义。本文就近年来关于Cx36在视网膜中的生理功能以及在近视发展的作用研究进行综述。

视网膜;缝隙连接蛋白36;近视;信号传导
ABSTRACT

The retina is a crucial site for mediating the conversion of external light signals into neural electrical signals.Connexin (Cx), as the basic structural and functional protein molecule of gap junction channels, plays an important role in maintaining the functional homeostasis of the retina.Cx36 has physiological functions in aspects such as retinal information transmission and biochemical factor regulation, and is involved in the formation of myopia.The " local retina-sclera remodeling" theory holds that abnormal visual information acts on the retina, causing sclera remodeling through retinal pigment epithelium-choroid signal transduction, and ultimately leading to myopia.Exploring the role and mechanism of retinal Cx36 in visual development and myopia formation is of great guiding significance for myopia prevention and control.This article reviews the research progress in the physiological functions of Cx36 in the retina and its role in myopia development in recent years.

Retina;Connexin 36;Myopia;Signal transduction
Bi Hongsheng, Email: mocdef.3ab611ibgnehsgnoh
引用本文

张浩,郭俊国,毕宏生. Cx36在视网膜信号传导及近视进展中的作用研究进展[J]. 中华实验眼科杂志,2025,43(02):169-173.

DOI:10.3760/cma.j.cn115989-20220921-00440

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
视网膜是介导外界光信号转换为神经电信号的关键部位。近年来研究发现,缝隙连接蛋白(connexin,Cx)广泛存在于视网膜的各层结构中并存在表达特异性,在维持视网膜功能稳态中发挥重要作用 [ 1 , 2 , 3 ]。目前已证实视网膜上表达的Cx包括Cx36、Cx43、Cx45、Cx59、Cx62、Cx26、Cx50、Cx30.2、Cx37、Cx57、Cx30、Cx32、Cx46、Cx30.3,表达量最高的是Cx36 [ 4 , 5 , 6 , 7 , 8 , 9 , 10 ]。视锥细胞、视杆细胞及无长突细胞均表达Cx36 [ 4 , 5 ];水平细胞表达Cx57和Cx50 [ 6 ],Cx57介导的水平细胞电耦联使视觉信号横向扩散,扩大感受野范围,从而增强神经节细胞对环境光的敏感性 [ 11 , 12 ];双极细胞和神经节细胞表达Cx36和Cx45 [ 7 , 8 ];视网膜色素上皮细胞表达Cx43 [ 9 ],近视眼中视黄酸通过增加Cx43蛋白表达量,改变细胞间通透性,增强视网膜色素上皮细胞的紧密连接功能 [ 13 , 14 ]。视网膜微血管内皮细胞表达Cx30.2、Cx37、Cx40和Cx43 [ 10 ]。外部异常光学刺激引起视网膜中Cx36的合成和分泌紊乱,影响视网膜感光细胞生物信号转化,形成近视 [ 15 ]。研究表明,缝隙连接蛋白delta2(gap juction delta 2, GJD2)为Cx36的编码基因,与近视发病具有高度相关性,视网膜Cx36磷酸化和表达水平改变可导致视网膜细胞间电耦联异常,影响视觉信号传导 [ 16 ]。本文就近年来Cx36在视网膜中的生理功能和近视形成中的作用研究进展进行综述。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
So C Zhang T Wang Q et al. The response of retinal ganglion cells to optical defocused visual stimuli in mouse retinas[J/OL]. Exp Eye Res 2024241109834[2025-01-07]. https://pubmed.ncbi.nlm.nih.gov/38382575/. DOI: 10.1016/j.exer.2024.109834 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Lee YH Kothmann WW Lin YP et al. Sources of calcium at connexin 36 gap junctions in the retina[J/OL]. eNeuro 202310(8)∶ 10.1523/ENEURO.0493-22.2023 [2024-06-11]. https://pubmed.ncbi.nlm.n ih.gov/37527925/ . DOI:.
返回引文位置Google Scholar
百度学术
万方数据
[3]
Brown-Panton CA Sabour S Zoidl G et al. Gap junction Delta-2b (gjd2b/Cx35.1) depletion causes hyperopia and visual-motor deficiencies in the zebrafish[J/OL]. Front Cell Dev Biol 2023111150273[2024-06-11]. https://pubmed.ncbi.nlm.nih.gov/36936688/. DOI: 10.3389/fcell.2023.1150273 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Asteriti S Gargini C Cangiano L Connexin 36 expression is required for electrical coupling between mouse rods and cones[J/OL]. Vis Neurosci 201734E006[2024-06-11]. https://pubmed.ncbi.nlm.nih.gov/28 965521/ . DOI: 10.1017/S0952523817000037 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Pan F Paul DL Bloomfield SA et al. Connexin36 is required for gap junctional coupling of most ganglion cell subtypes in the mouse retina[J]. J Comp Neurol 2010518(6)∶911-927. DOI: 10.1002/cne.22254 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Dorgau B Herrling R Schultz K et al. Connexin50 couples axon terminals of mouse horizontal cells by homotypic gap junctions[J]. J Comp Neurol 2015523(14)∶2062-2081. DOI: 10.1002/cne.23779 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Feigenspan A Janssen-Bienhold U Hormuzdi S et al. Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina[J]. J Neurosci 200424(13)∶3325-3334. DOI: 10.1523/JNEUROSCI.5598-03.2004 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Schubert T Maxeiner S Krüger O et al. Connexin45 mediates gap junctional coupling of bistratified ganglion cells in the mouse retina[J]. J Comp Neurol 2005490(1)∶29-39. DOI: 10.1002/cne.20621 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Akanuma SI Higashi H Maruyama S et al. Expression and function of connexin 43 protein in mouse and human retinal pigment epithelial cells as hemichannels and gap junction proteins[J]. Exp Eye Res 2018168128-137. DOI: 10.1016/j.exer.2018.01.016 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Manasson J Tien T Moore C et al. High glucose-induced downregulation of connexin 30.2 promotes retinal vascular lesions:implications for diabetic retinopathy[J]. Invest Ophthalmol Vis Sci 201354(3)∶2361-2366. DOI: 10.1167/iovs.12-10815 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Janssen-Bienhold U Trümpler J Hilgen G et al. Connexin57 is expressed in dendro-dendritic and axo-axonal gap junctions of mouse horizontal cells and its distribution is modulated by light[J]. J Comp Neurol 2009513(4)∶363-374. DOI: 10.1002/cne.21965 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Shelley J Dedek K Schubert T et al. Horizontal cell receptive fields are reduced in connexin57-deficient mice[J]. Eur J Neurosci 200623(12)∶3176-3186. DOI: 10.1111/j.1460-9568.2006.04848.x .
返回引文位置Google Scholar
百度学术
万方数据
[13]
王凤翔何守志顾峥维甲酸对人视网膜色素上皮细胞Cx43蛋白和mRNA表达的影响[J]. 眼科新进展 201131(4)∶317-320. DOI: 10.13389/j.cnki.rao.2011.04.005 .
返回引文位置Google Scholar
百度学术
万方数据
Wang FX He SZ Gu Z et al. Retinoic acid on expression of Cx43 protein and mRNA in cultured human retinal pigment epithelial cells[J]. Rec Adv Ophthalmol 201131(4)∶317-320. DOI: 10.13389/j.cnki.rao.2011.04.005 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[14]
毛俊峰刘双珍豆秀琼视黄酸对豚鼠离焦性近视眼视网膜色素上皮通透性的调控[J]. 中华实验眼科杂志 201331(12)∶1117-1121. DOI: 10.3760/cma.j.issn.2095-0160.2013.12.005 .
返回引文位置Google Scholar
百度学术
万方数据
Mao JF Liu SZ Dou XQ et al. Regulation of retinoic acid on permeability of retinal pigment epithelial barrier in lens-induced myopia[J]. Chin J Exp Ophthalmol 201331(12)∶1117-1121. DOI: 10.3760/cma.j.issn.2095-0160.2013.12.005 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[15]
Zi Y Deng Y Zhao J et al. Morphologic and biochemical changes in the retina and sclera induced by form deprivation high myopia in guinea pigs[J/OL]. BMC Ophthalmol 202020(1)∶105[2024-06-10]. https://pubmed.ncbi.nlm.nih.gov/32178637/. DOI: 10.1186/s12886-020-01377-1 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
van der Sande E Haarman A Quint WH et al. The role of GJD2(Cx36) in refractive error development[J/OL]. Invest Ophthalmol Vis Sci 202263(3)∶5[2024-06-10]. https://pubmed.ncbi.nlm.nih.gov/35262731/. DOI: 10.1167/iovs.63.3.5 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Laird DW Lampe PD . Cellular mechanisms of connexin-based inherited diseases[J]. Trends Cell Biol 202232(1)∶58-69. DOI: 10.1016/j.tcb.2021.07.007 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Zhang J Green CR Mugisho OO . Cell transdifferentiation in ocular disease:potential role for connexin channels[J/OL]. Exp Cell Res 2021407(2)∶112823[2024-06-10]. https://pubmed.ncbi.nlm.nih.gov/34506760/. DOI: 10.1016/j.yexcr.2021.112823 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Ceroni F Aguilera-Garcia D Chassaing N et al. New GJA8 variants and phenotypes highlight its critical role in a broad spectrum of eye anomalies[J]. Hum Genet 2019138(8-9)∶1027-1042. DOI: 10.1007/s00439-018-1875-2 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Meşe G Richard G White TW . Gap junctions:basic structure and function[J]. J Invest Dermatol 2007127(11)∶2516-2524. DOI: 10.1038/sj.jid.5700770 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Nielsen MS Axelsen LN Sorgen PL et al. Gap junctions[J]. Compr Physiol 20122(3)∶1981-2035. DOI: 10.1002/cphy.c110051 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
赵希伟刘倩滕飞连接蛋白43的磷酸化在恶性肿瘤发生机制中的研究进展[J]. 河北医药 202143(24)∶3812-3816. DOI: 10.3969/j.issn.1002-7386.2021.24.035 .
返回引文位置Google Scholar
百度学术
万方数据
Zhao XW Liu Q Teng F et al. Research progress on the mechanism of pho sphorylation of connexin 43 in pathogenesis of malignant tumor [J]. Hebei Med J 202143(24)∶3812-3816. DOI: 10.3969/j.issn.1002-7386.2021.24.035 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[23]
王光亮吴雪梅缝隙连接蛋白及其阻断剂研究进展[J]. 新乡医学院学报 201936(8)∶792-796. DOI: 10.7683/xxyxyxb.2019.08.022 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Seemann N Welling A Rustenbeck I The inhibitor of connexin Cx36 channels,mefloquine,inhibits voltage-dependent Ca 2+ channels and insulin secretion [J]. Mol Cell Endocrinol 201847297-106. DOI: 10.1016/j.mce.2017.11.024 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Li Y Jiang J Yang J et al. PI3K/AKT/mTOR signaling participates in insulin-mediated regulation of pathological myopia-related factors in retinal pigment epithelial cells[J/OL]. BMC Ophthalmol 202121(1)∶218[2024-06-11]. https://pubmed.ncbi.nlm.nih.gov/34001063/. DOI: 10.1186/s12886-021-01946-y .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Zhai J Wang Q Tao L Connexin expression patterns in diseased human corneas[J]. Exp Ther Med 20147(4)∶791-798. DOI: 10.3892/etm.2014.1530 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Berthoud VM Gao J Minogue PJ et al. Connexin mutants compromise the lens circulation and cause cataracts through biomineralization[J/OL]. Int J Mol Sci 202021(16)∶5822[2024-06-11]. https://pubmed.ncbi.nlm.nih.gov/32823750/. DOI: 10.3390/ijms21165822 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Mou YY Zhao GQ Lin JY et al. Expression of connexin 43 and E-cadherin in choroidal melanoma[J]. Int J Ophthalmol 20114(2)∶156-161. DOI: 10.3980/j.issn.2222-3959.2011.02.09 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
DeVries SH Qi X Smith R et al. Electrical coupling between mammalian cones[J]. Curr Biol 200212(22)∶1900-1907. DOI: 10.1016/s0960-9822(02)01261-7 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Liang Z Freed MA . Cross inhibition from ON to OFF pathway improves the efficiency of contrast encoding in the mammalian retina[J]. J Neurophysiol 2012108(10)∶2679-2688. DOI: 10.1152/jn.00589.2012 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Cowan CS Abd-El-Barr M van der Heijden M et al. Connexin 36 and rod bipolar cell independent rod pathways drive retinal ganglion cells and optokinetic reflexes[J]. Vision Res 201611999-109. DOI: 10.1016/j.visres.2015.11.006 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Hartveit E Veruki ML . Electrical synapses between AII amacrine cells in the retina:function and modulation[J]. Brain Res 20121487160-172. DOI: 10.1016/j.brainres.2012.05.060 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Ishibashi M Keung J Morgans CW et al. Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals[J/OL]. Elife 202211e73039[2024-06-12]. https://pubmed.ncbi.nlm.nih.gov/35471186/. DOI: 10.7554/eLife.73039 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Jin N Zhang Z Keung J et al. Molecular and functional architecture of the mouse photoreceptor network[J/OL]. Sci Adv 20206(28)∶eaba7232[2024-06-12]. https://pubmed.ncbi.nlm.nih.gov/32832605/. DOI: 10.1126/sciadv.aba7232 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Zhou X Pardue MT Iuvone PM et al. Dopamine signaling and myopia development:what are the key challenges[J]. Prog Retin Eye Res 20176160-71. DOI: 10.1016/j.preteyeres.2017.06.003 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Kothmann WW Massey SC <x>O</x> <x>'</x> <x>Brien</x> J Dopamine-stimulated dephosphorylation of connexin 36 mediates AII amacrine cell uncoupling[J/OL]. J Neurosci 200929(47)∶14903-14911[2024-06-12]. https://pubmed.ncbi.nlm.nih.gov/19940186/. DOI: 10.1523/JNEUROSCI.3436-09.2009 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
<x>O</x> <x>'</x> <x>Brien</x> J Bloomfield SA . Plasticity of retinal gap junctions:roles in synaptic physiology and disease[J]. Annu Rev Vis Sci 2018479-100. DOI: 10.1146/annurev-vision-091517-034133 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Li H Zhang Z Blackburn MR et al. Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina[J]. J Neurosci 201333(7)∶3135-3150. DOI: 10.1523/JNEUROSCI.2807-12.2013 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Li H Chuang AZ <x>O</x> <x>'</x> <x>Brien</x> J Regulation of photoreceptor gap junction phosphorylation by adenosine in zebrafish retina[J]. Vis Neurosci 201431(3)∶237-243. DOI: 10.1017/S095252381300062X .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Reinke H Asher G Crosstalk between metabolism and circadian clocks[J]. Nat Rev Mol Cell Biol 201920(4)∶227-241. DOI: 10.1038/s41580-018-0096-9 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Zhang Z Li H Liu X et al. Circadian clock control of connexin36 phosphorylation in retinal photoreceptors of the CBA/CaJ mouse strain[J/OL]. Vis Neurosci 201532E009[2024-06-12]. https://pubmed.ncbi.nlm.nih.gov/26241696/. DOI: 10.1017/S0952523815000061 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Katti C Butler R Sekaran S Diurnal and circadian regulation of connexin 36 transcript and protein in the mammalian retina[J]. Invest Ophthalmol Vis Sci 201354(1)∶821-829. DOI: 10.1167/iovs.12-10375 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Zhang S Lyuboslavsky P Dixon JA et al. Effects of cone connexin-36 disruption on light adaptation and circadian regulation of the photopic ERG[J/OL]. Invest Ophthalmol Vis Sci 202061(6)∶24[2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/32531058/. DOI: 10.1167/iovs.61.6.24 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Banerjee S Wang Q Zhao F et al. Increased connexin36 phosphorylation in AII amacrine cell coupling of the mouse myopic retina[J/OL]. Front Cell Neurosci 202014124[2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/32547367/. DOI: 10.3389/fncel.2020.00124 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Banerjee S Wang Q Tang G et al. Functional connexin35 increased in the myopic chicken retina[J/OL]. Vis Neurosci 202138E008[2024-06-13]. https://pubmed.ncbi.nlm.nih.gov/33988110/. DOI: 10.1017/S0952523821000079 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Yang GY Liu FY Li X et al. Decreased expression of gap junction delta-2 (GJD2) messenger RNA and connexin 36 protein in form-deprivation myopia of guinea pigs[J]. Chin Med J (Engl) 2019132(14)∶1700-1705. DOI: 10.1097/CM9.0000000000000319 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Zhu Q Yang G Chen B et al. Altered expression of GJD2 messenger RNA and the coded protein connexin 36 in negative lens-induced myopia of guinea pigs[J]. Optom Vis Sci 202097(12)∶1080-1088. DOI: 10.1097/OPX.0000000000001611 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Chakraborty R Park HN Hanif AM et al. ON pathway mutations increase susceptibility to form-deprivation myopia[J]. Exp Eye Res 201513779-83. DOI: 10.1016/j.exer.2015.06.009 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Wang M Aleman AC Schaeffel F Probing the potency of artificial dynamic ON or OFF stimuli to inhibit myopia development[J]. Invest Ophthalmol Vis Sci 201960(7)∶2599-2611. DOI: 10.1167/iovs.18-26471 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Quint WH Tadema K de Vrieze E et al. Loss of gap junction delta-2 ( GJD2 ) gene orthologs leads to refractive error in zebrafish [J/OL]. Commun Biol 20214(1)∶676[2024-06-14]. https://pubmed.ncbi.nlm.nih.gov/34083742/. DOI: 10.1038/s42003-021-02185-z .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Zhi Z Xiang J Fu Q et al. The role of retinal connexins Cx36 and horizontal cell coupling in emmetropization in guinea pigs[J/OL]. Invest Ophthalmol Vis Sci 202162(9)∶27[2024-06-14]. https://pubmed.ncbi.nlm.nih.gov/34283211/. DOI: 10.1167/iovs.62.9.27 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Shi Q Teves MM Lillywhite A et al. Light adaptation in the chick retina:dopamine,nitric oxide,and gap-junction coupling modulate spatiotemporal contrast sensitivity[J/OL]. Exp Eye Res 2020195108026[2024-06-15]. https://pubmed.ncbi.nlm.nih.gov/32246982/. DOI: 10.1016/j.exer.2020.108026 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Teves M Shi Q <x>Ste</x> <x>ll</x> WK et al. The role of cell-cell coupling inmyopia development and light adaptation[J]. Invest Ophthalmol Vis Sci 2014553036-3036.
返回引文位置Google Scholar
百度学术
万方数据
[54]
Solouki AM Verhoeven VJ van Duijn CM et al. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14[J]. Nat Genet 201042(10)∶897-901. DOI: 10.1038/ng.663 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Hysi PG Choquet H Khawaja AP et al. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia[J]. Nat Genet 202052(4)∶401-407. DOI: 10.1038/s41588-020-0599-0 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
Cheng CY Schache M Ikram MK et al. Nine loci for ocular axial length identified through genome-wide association studies,including shared loci with refractive error[J]. Am J Hum Genet 201393(2)∶264-277. DOI: 10.1016/j.ajhg.2013.06.016 .
返回引文位置Google Scholar
百度学术
万方数据
[57]
Li YT Xie MK Wu J Association between ocular axial length-related genes and high myopia in a Han Chinese population[J]. Ophthalmologica 2016235(1)∶57-60. DOI: 10.1159/000439446 .
返回引文位置Google Scholar
百度学术
万方数据
[58]
Chen LJ Li FF Lu SY et al. Association of polymorphisms in ZFHX1B,KCNQ5 and GJD2 with myopia progression and polygenic risk prediction in children[J]. Br J Ophthalmol 2021105(12)∶1751-1757. DOI: 10.1136/bjophthalmol-2020-318708 .
返回引文位置Google Scholar
百度学术
万方数据
[59]
Haarman A Enthoven CA Tedja MS et al. Phenotypic consequences of the GJD2 risk genotype in myopia development[J/OL]. Invest Ophthalmol Vis Sci 202162(10)∶16[2024-06-15]. https://pubmed.ncbi.nlm.nih.gov/34406332/. DOI: 10.1167/iovs.62.10.16 .
返回引文位置Google Scholar
百度学术
万方数据
[60]
Tideman JW Fan Q Polling JR et al. When do myopia genes have their effect? Comparison of genetic risks between children and adults[J]. Genet Epidemiol 201640(8)∶756-766. DOI: 10.1002/gepi.21999 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
毕宏生,Email: mocdef.3ab611ibgnehsgnoh
B
所有作者均声明不存在利益冲突
C
感谢山东中医药大学眼科与视光医学院纪海峰在本文修改过程中提供的意见
D
国家重点研发计划 (2021YFC2702103、2019YFC1710205)
山东省重点研发计划 (2017GSF19110、2019GGH319001、2019GSF108252)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号