论著
ENGLISH ABSTRACT
靶向小鼠 Ext1Ext2基因的CRISPR/Cas9系统设计及打靶效力分析
王宁
王添贤
岳鹏鹏
于鸿浩
作者及单位信息
·
DOI: 10.3760/cma.j.cn231536-20240912-00083
CRISPR/Cas9 system design and targeting efficacy analysis for mouse Ext1 and Ext2 genes
Wang Ning
Wang Tianxian
Yue Pengpeng
Yu Honghao
Authors Info & Affiliations
Wang Ning
Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
Wang Tianxian
Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
Yue Pengpeng
Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
Yu Honghao
Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
·
DOI: 10.3760/cma.j.cn231536-20240912-00083
38
11
0
0
0
0
PDF下载
APP内阅读
摘要

目的设计靶向小鼠 Ext1Ext2基因的CRISPR/Cas9基因编辑系统,并在细胞水平验证打靶效力,旨在建立高效靶向小鼠 Ext1Ext2基因的编辑系统,为后续建立基因编辑小鼠模型奠定基础。

方法基于CRISPR/Cas9系统基因打靶的原理,靶向小鼠 Ext1Ext2基因分别设计两条sgRNA导向序列,构建了4个sgRNA表达质粒,并与Cas9表达质粒共转染小鼠N2a细胞,经过嘌呤霉素和杀稻瘟霉素药物筛选后收取阳性转染细胞,PCR扩增打靶区域DNA片段,利用Sanger测序鉴定打靶是否成功,最后通过TA克隆测序进行打靶效率分析,并对7次打靶效率结果进行统计学分析。

结果 Ext1基因的Ext1-M-sgRNA1、Ext1-M-sgRNA2以及 Ext2基因的Ext2-M-sgRNA1、Ext2-M-sgRNA2这4个靶点均成功发生突变,通过TA克隆测序结果统计分析得到4个位点的突变效率分别为90%、80%、70%和50%,且Ext1-M-sgRNA1的打靶效率高于Ext1-M-sgRNA2( P值为0.040 8),Ext2-M-sgRNA1的打靶效率高于Ext2-M-sgRNA2( P值为0.040 1)。

结论本研究成功构建了高效靶向小鼠 Ext1Ext2基因的CRISPR/Cas9系统,为后续构建动物模型深入研究遗传性多发性外生骨疣(hereditary multiple eostosis,HME)奠定基础。

基因编辑;CRISPR/Cas9系统; Ext1基因 ; Ext2基因
ABSTRACT

ObjectiveDesign a CRISPR/Cas9 gene editing system targeting mouse Ext1 and Ext2 genes and verified the targeting efficacy at the cellular level, aiming to establish an editing system that efficiently targets mouse Ext1 and Ext2 genes, and to lay the foundation for the subsequent establishment of a gene editing mouse model.

MethodsBased on the principle of the CRISPR/Cas9 gene targeting system, two sgRNA guide sequences were designed to target the Ext1 and Ext2 genes in mice. Four sgRNA expression plasmids were constructed and co-transfected with the Cas9 expression plasmid into mouse N2a cells. After selection with puromycin and blasticidin drugs, positive transfected cells were collected. The DNA fragment of the targeting region was amplified by PCR, and the targeting success was identified by Sanger sequencing. Finally, TA cloning sequencing was used for analysis of the targeting efficiency, and statistical analysis was performed on the results of seven targeting efficiency experiments.

ResultsThe four targets, Ext1-M-sgRNA1 and Ext1-M-sgRNA2 for the Ext1 gene, and Ext2-M-sgRNA1 and Ext2-M-sgRNA2 for the Ext2 gene, all successfully underwent mutations. Statistical analysis of the TA cloning sequencing results showed that the mutation efficiencies for the four sites were 90%, 80%, 70%, and 50%, respectively. The targeting efficiency of Ext1-M-sgRNA1 is higher than that of Ext1-M-sgRNA2 ( P=0.040 8), and the targeting efficiency of Ext2-M-sgRNA1 is higher than that of Ext2-M-sgRNA2 ( P=0.040 1).

ConclusionsIn this study, we successfully constructed a CRISPR/Cas9 system that efficiently targeted mouse Ext1 and Ext2 genes, which laid a foundation for further research on hereditary multiple exostosis (HME) by constructing animal models.

Gene editing;CRISPR/Cas9 system; Ext1 gene ; Ext2 gene
Yu Honghao, Email: mocdef.6ab21hhyeneg
引用本文

王宁,王添贤,岳鹏鹏,等. 靶向小鼠 Ext1Ext2基因的CRISPR/Cas9系统设计及打靶效力分析 [J]. 国际遗传学杂志,2025,48(01):8-16.

DOI:10.3760/cma.j.cn231536-20240912-00083

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
遗传性多发性外生骨疣(hereditary multiple eostosis,HME)是一种累及人软骨化骨,以骨骼系统的多发性外生骨疣为特征的常染色体显性遗传病 [ 1 , 2 , 3 ]。该病以骨表面有软骨帽的骨隆突变形成为特征,多见于长骨干骺端 [ 4 ],并有一定几率恶变成软骨肉瘤,恶变率约为2.7% [ 5 ]。HME的临床表现复杂多样,主要表现为多发性骨软骨瘤、骨骼畸形以及肢体功能障碍,其具体表现因人而异,这也为HME的防治带来了一定的挑战 [ 6 ]
根据文献报道,HME主要与 Ext1(8q24.11-q24.13)和 Ext2(11p12-p11)的突变有关,大多数患者为 Ext1Ext2杂合子突变 [ 7 ]Ext1Ext2基因编码区及外显子内含子拼接区的测序分析发现HME患病人群中约80%~90%的患者存在 Ext1Ext2突变,其中56%~78%的HME家系携带 Ext1基因突变,21%~44%的HME家系携带 Ext2基因突变 [ 8 , 9 , 10 ]。HME具有遗传异质性, Ext1突变的位点较为分散,各个外显子中都有发生 [ 11 ]Ext2突变位点常发生在前2/3的蛋白编码区。错义突变、无义突变、移码突变和拼接位点突变为HME患者的主要突变类型 [ 12 ]Ext1Ext2编码的糖基转移酶参与硫酸乙酰肝素(heparan sulfate,HS)的生物合成,其突变失活后导致HS无法合成或者合成量降低(杂合子突变),最终引起骨骼系统畸变。总之,引起HME的遗传病因主要是 Ext1Ext2基因的突变。
基于CRISPR/Cas9系统的基因编辑技术是一种能对目标靶基因进行定点编辑的技术,它具有设计灵活、成本低、操作简单、准确性高、可多位点同时打靶等优势,现已广泛应用于生命科学的各个领域 [ 13 , 14 ]。CRISPR/Cas9系统包括sgRNA和Cas9蛋白酶两个原件组成,其中sgRNA通过RNA-DNA碱基互补的方式与目标DNA结合,介导Cas9蛋白发挥DNA内切酶活性,切割DNA双链,形成DNA双链断裂损伤,随后细胞激活DNA双链断裂损伤的修复,并在修复的过程中引起切割位点DNA碱基的随机突变 [ 15 , 16 ]。CRISPR/Cas9系统发挥基因编辑作用的关键在于sgRNA与目标DNA的靶向结合能力,因此筛选高效打靶目标基因的sgRNA是构建基因编辑动物或者基因编辑细胞模型以深入研究目标基因功能等的必要前提。本研究分别设计了靶向小鼠 Ext1Ext2基因的4个sgRNA,旨在构建高效靶向小鼠 Ext1Ext2基因的CRISPR/Cas9系统,为后续建立 Ext1Ext2基因编辑小鼠模型,探索HME发生和发展机制、研制新的治疗方法、发现药物新靶点以及临床前药效学评价等生物医学研究奠定基础。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Pannier S , Legeai-Mallet L . Hereditary multiple exostoses and enchondromatosis[J]. Best Pract Res Clin Rheumatol, 200822(1):45-54. DOI: 10.1016/j.berh.2007.12.004 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Stieber JR , Dormans JP . Manifestations of hereditary multiple exostoses[J]. J Am Acad Orthop Surg 200513(2):110-120. DOI: 10.5435/00124635-200503000-00004 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Bovée JV . Multiple osteochondromas[J]. Orphanet J Rare Dis 200833. DOI: 10.1186/1750-1172-3-3 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
宋国清夏家辉周江南遗传性多发性外生骨疣的遗传学研究进展[J]. 国外医学遗传学分册 199922(2):25-27. DOI: 10.3760/cma.j.issn.1001-1048.1999.02.108 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Czajka CM , DiCaprio MR . What is the proportion of patients with multiple hereditary exostoses who undergo malignant degeneration[J]. Clin Orthop Relat Res, 2015473(7):2355-2361. DOI: 10.1007/s11999-015-4134-z .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Li Y , Wang J , Wang Z ,et al. A genotype-phenotype study of hereditary multiple exostoses in forty-six Chinese patients[J]. BMC Med Genet 201718(1):126. DOI: 10.1186/s12881-017-0488-2 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Anower-E-Khuda MF , Matsumoto K , Habuchi H ,et al. Glycosaminoglycans in the blood of hereditary multiple exostoses patients: Half reduction of heparan sulfate to chondroitin sulfate ratio and the possible diagnostic application[J]. Glycobiology 201323(7):865-876. DOI: 10.1093/glycob/cwt024 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Porter DE , Lonie L , Fraser M ,et al. Severity of disease and risk of malignant change in hereditary multiple exostoses. A genotype-phenotype study[J]. J Bone Joint Surg Br 200486(7):1041-1046. DOI: 10.1302/0301-620x.86b7.14815 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Jennes I , Entius MM , Van Hul E ,et al. Mutation screening of EXT1 and EXT2 by denaturing high-performance liquid chromatography, direct sequencing analysis, fluorescence in situ hybridization, and a new multiplex ligation-dependent probe amplification probe set in patients with multiple osteochondromas[J]. J Mol Diagn, 200810(1):85-92. DOI: 10.2353/jmoldx.2008.070086 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Delgado MA , Martinez-Domenech G , Sarrión P ,et al. A broad spectrum of genomic changes in latinamerican patients with EXT1/EXT2-CDG[J]. Sci Rep 201446407. DOI: 10.1038/srep06407 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Lonie L , Porter DE , Fraser M ,et al. Determination of the mutation spectrum of the EXT1/EXT2 genes in British Caucasian patients with multiple osteochondromas, and exclusion of six candidate genes in EXT negative cases[J]. Hum Mutat, 200627(11):1160. DOI: 10.1002/humu.9467 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Ishimaru D , Gotoh M , Takayama S ,et al. Large-scale mutational analysis in the EXT1 and EXT2 genes for Japanese patients with multiple osteochondromas[J]. BMC Genet 2016,9:17-52. DOI: 10.1186/s12863-016-0359-4 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Mali P , Yang L , Esvelt KM ,et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013339(6121):823-826. DOI: 10.1126/science.1232033 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Doudna JA , Charpentier E . Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science 2014346(6213):1258096. DOI: 10.1126/science.1258096 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Hsu PD , Lander ES , Zhang F . Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell 2014157(6):1262-1278. DOI: 10.1016/j.cell.2014.05.010 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Jiang C , Meng L , Yang B ,et al. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment[J]. Clin Genet, 202097(1):73-88. DOI: 10.1111/cge.13589 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
路钦越陈志杨章平CRISPR/Cas9基因编辑技术综述[J]. 河南农业 20212160-62. DOI: 10.15904/j.cnki.hnny.2021.21.023 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
岳鹏鹏唐琴艳李欣怡 靶向小鼠Gaa基因的CRISPR/Cas9系 统设计及打靶效力分析 [J]. 医学研究学报 202033(10):1021-1027. DOI: 10.16571/j.cnki.1008-8199.2020.10.003 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Ma Y , Zhang L , Huang X . Genome modification by CRISPR/Cas9[J]. FEBS J, 2014281(23):5186-5193. DOI: 10.1111/febs.13110 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Lei L , Chen H , Xue W ,et al. APOBEC3 induces mutations during repair of CRISPR-Cas9-generated DNA breaks[J]. Nat Struct Mol Biol 201825(1):45-52. DOI: 10.1038/s41594-017-0004-6 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Pellagatti A , Dolatshad H , Valletta S et al. Application of CRISPR/Cas9 genome editing to the study and treatment of disease[J]. Arch Toxicol 201589(7):1023-1034. DOI: 10.1007/s00204-015-1504-y .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Cong L , Zhang F . Genome engineering using CRISPR-Cas9 system[J]. Methods Mol Biol, 20151239197-217. DOI: 10.1007/978-1-4939-1862-1_10 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Zhang F , Wen Y , Guo X . CRISPR/Cas9 for genome editing: progress, implications and challenges[J]. Hum Mol Genet 201423(R1):R40-R46. DOI: 10.1093/hmg/ddu125 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Jo YI , Suresh B , Kim H ,et al. CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods[J]. Biochim Biophys Acta, 20151856(2):234-243. DOI: 10.1016/j.bbcan.2015.09.003 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
于鸿浩,Email: mocdef.6ab21hhyeneg
B

王宁:数据整理与分析,撰写论文;王添贤:开展了质粒构建、细胞培养、基因型分析等实验;岳鹏鹏:实验设计;于鸿浩:实验设计与指导,论文修改

C
所有作者声明不存在利益冲突
D
国家自然科学基金 (32160147,32460152)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号