口腔黏膜病学研究
ENGLISH ABSTRACT
尺度不变特征增强深度学习在口腔黏膜病损分割中应用的研究
张睿
金路
陈谦明
丁婷婷
张琦玥
陈耀武
田翔
曹雨齐
陈小燕
朱赴东
作者及单位信息
·
DOI: 10.3760/cma.j.cn112144-20241210-00467
Scale-invariant feature-enhanced deep learning framework for oral mucosal lesion segmentation
Zhang Rui
Jin Lu
Chen Qianming
Ding Tingting
Zhang Qiyue
Chen Yaowu
Tian Xiang
Cao Yuqi
Chen Xiaoyan
Zhu Fudong
Authors Info & Affiliations
Zhang Rui
Center of Information, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province & Key Laboratory of Oral Biomedical Research of Zhejiang Province & Cancer Center of Zhejiang University & Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310005, China
Jin Lu
Center of Information, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province & Key Laboratory of Oral Biomedical Research of Zhejiang Province & Cancer Center of Zhejiang University & Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310005, China
Chen Qianming
Oral Medicine Center, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province & Key Laboratory of Oral Biomedical Research of Zhejiang Province & Cancer Center of Zhejiang University & Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310005, China
Ding Tingting
Oral Medicine Center, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province & Key Laboratory of Oral Biomedical Research of Zhejiang Province & Cancer Center of Zhejiang University & Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310005, China
Zhang Qiyue
Clinical Research Center for Oral Diseases, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Key Laboratory of Oral Biomedical Research of Zhejiang Province & Cancer Center of Zhejiang University & Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310005, China
Chen Yaowu
Zhejiang University, College of Biomedical Engineering and Instrument Science & Zhejiang University Embedded System Engineering Research Center, Ministry of Education of China, Hangzhou 310027, China
Tian Xiang
Zhejiang University, College of Biomedical Engineering and Instrument Science & Zhejiang University Embedded System Engineering Research Center, Ministry of Education of China, Hangzhou 310027, China
Cao Yuqi
Zhejiang University, College of Control Science and Engineering & State Key Laboratory of Industrial Control Technology, Hangzhou 310027, China
Chen Xiaoyan
Orthodontics Department, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province & Key Laboratory of Oral Biomedical Research of Zhejiang Province & Cancer Center of Zhejiang University & Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310005, China
Zhu Fudong
Oral Medicine Center, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province & Key Laboratory of Oral Biomedical Research of Zhejiang Province & Cancer Center of Zhejiang University & Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310005, China
·
DOI: 10.3760/cma.j.cn112144-20241210-00467
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

目的开发一种融合深度学习与尺度不变特征变换算法的口腔黏膜病损语义分割模型(PixelSIFT-UNet),以提高口腔黏膜疾病病损区域分割精度。

方法纳入浙江大学医学院附属口腔医院2020年1月至2022年12月期间收集的838张符合标准的口腔黏膜疾病临床白光图像,使用Python语言random.seed函数设置随机种子,通过random.sample函数进行随机抽样,按6∶2∶2的比例划分为训练集(506张)、验证集(166张)和测试集(166张)。采用Labelme软件对训练集图像进行病损边界标注,并基于PixelSIFT-UNet构建深度学习模型,分别使用VGG-16与ResNet-50作为骨干网络。通过验证集优化模型参数,在测试集上评估模型性能,包括Dice系数、平均交并比(mIoU)、平均像素准确率(mPA)和精确率(Precision),并与传统语义分割模型(U-Net、PSPNet)进行对比分析。

结果所开发的PixelSIFT-UNet模型能精确分割口腔扁平苔藓、口腔白斑病和口腔黏膜下纤维性变3种常见的口腔黏膜疾病。采用VGG-16为骨干网络时,Dice系数、mIoU、mPA和Precision分别达到0.642、0.699、0.836和0.792;采用ResNet-50为骨干网络时,相应指标分别达到0.668、0.733、0.872和0.817,较传统U-Net模型(相应指标:0.662、0.717、0.861和0.809)、PSPNet模型(相应指标:0.671、0.721、0.858和0.813)的各项性能指标均有显著提升。

结论所开发的PixelSIFT-UNet模型在口腔黏膜病损分割任务中表现卓越,其性能指标显著优于传统语义分割模型,可为提高口腔黏膜病损分割精度提供有效工具。

口腔黏膜;病损检测;深度学习;PixelSIFT-UNet模型;尺度不变特征变换算法
ABSTRACT

ObjectiveTo develop PixelSIFT-UNet, a novel semantic segmentation model that integrates deep learning with scale-invariant feature transform (SIFT) algorithm to improve the segmentation accuracy of oral mucosal lesions.

MethodsThis investigation utilized 838 standard clinical white light images of oral mucosal diseases acquired from January 2020 to December 2022 at the Stomatology Hospital Zhejiang University School of Medicine. Randomization was achieved through Python′s random.seed function implementation. The random sample function was subsequently applied for sampling distribution. The dataset was stratified into three subsets with a 6∶2∶2 ratio: training ( n=506), validation ( n=166), and testing ( n=166). Lesion boundaries were annotated using Labelme software, and a PixelSIFT-UNet-based deep learning model was developed with VGG-16 and ResNet-50 backbone networks. Model parameters were optimized using the validation set, and performance metrics [including Dice coefficient, mean intersection over union (mIoU), mean pixel accuracy (mPA), and Precision] were assessed on the test set. The model′s performance was benchmarked against conventional semantic segmentation frameworks (U-Net and PSPNet).

ResultsThe developed PixelSIFT-UNet model could achieve precise segmentation of three common oral mucosal lesions: oral lichen planus, oral leukoplakia, and oral submucous fibrosis. Utilizing VGG-16 as the backbone network, the model achieved Dice coefficient, mIoU, mPA, and Precision values of 0.642, 0.699, 0.836, and 0.792, respectively. Implementation with ResNet-50 backbone network yielded metrics of 0.668, 0.733, 0.872 and 0.817, demonstrating significant improvements across all performance indicators compared to conventional U-Net model (relevant metrics: 0.662, 0.717, 0.861 and 0.809) and PSPNet model (relevant metrics: 0.671, 0.721, 0.858 and 0.813).

ConclusionsThe proposed PixelSIFT-UNet architecture demonstrates superior performance in oral mucosal lesion segmentation tasks, surpassing conventional semantic segmentation models and providing robust quantitative improvements in segmentation accuracy.

Oral mucosa;Lesion detection;Deep learning;PixelSIFT-UNet model;Scale invariant feature transform algorithm
Zhu Fudong, Email: nc.defudabe.ujzdfz, Tel: 0086-571-85269609
引用本文

张睿,金路,陈谦明,等. 尺度不变特征增强深度学习在口腔黏膜病损分割中应用的研究[J]. 中华口腔医学杂志,2025,60(03):239-247.

DOI:10.3760/cma.j.cn112144-20241210-00467

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
本文评分
5 [累计1个]
口腔黏膜疾病种类繁多,发病因素复杂,临床表现诊治较为困难。其中,口腔潜在恶性疾患(oral potentially malignant disorders,OPMD)是指一组发生于口腔黏膜的病损,主要包括口腔扁平苔藓(oral lichen planus,OLP)、口腔白斑病(oral leukoplakia,OLK)和口腔黏膜下纤维性变(oral submucous fibrosis,OSF)等。研究表明,这些病损具有恶性转化的潜在风险,约三分之一的OPMD可能演变为口腔鳞状细胞癌 1 , 2。近年来,不健康生活方式的普遍化,包括昼夜节律紊乱、烟酒滥用和营养失调,导致年轻群体中口腔癌发病率显著上升。据统计,2020年全球新发口腔癌病例达84万例,死亡病例约42万例 3 , 4 , 5。因此,对OPMD的早期诊断和干预对降低口腔癌发病率具有重要意义,也是降低相关疾病死亡率的关键策略 6 , 7
目前OPMD的诊断主要依靠临床医师基于专业知识和临床经验进行判断。然而,由于OPMD早期症状较隐匿,即使经验丰富的医师在临床实践中也可能面临一定的诊断挑战。同时,高水平医师的培养需要较长周期且成本较高,在医疗资源匮乏地区尤其困难 8。因此,开发智能辅助诊断工具,作为临床诊断的补充手段,有助于为医师提供客观参考依据,进一步提高诊断的准确性和效率。基于深度学习的语义分割模型通过对大规模医学影像数据的训练,能自动提取疾病特征信息,识别临床医师可能忽视或需要较长时间才能发现的潜在疾病 9,从而实现疾病的精准识别和定位。这种方法不仅克服了人工诊断的主观性和不确定性,还提高了诊断的客观性和准确性。此外,语义分割模型通过持续优化,能不断提升疾病识别性能,降低误诊和漏诊率。
现有研究主要集中于利用深度学习方法进行口腔黏膜OPMD疾病图像的分类和病损区域目标检测 10 , 11 , 12 , 13 , 14 , 15。部分研究针对特定口腔黏膜疾病和口腔癌进行了分类与病损检测 16 , 17 , 18 , 19 , 20。然而,这些研究大多局限于单一疾病的目标检测,且仅输出矩形框坐标和类别标签,限制了检测精度。目前,针对多种口腔黏膜疾病的高精度病损分割研究仍有待深入。为解决目前口腔黏膜疾病诊断中病损分割精度不足、效率较低的问题,本研究旨在提出一种基于深度学习和尺度不变特征变换算法(scale-invariant feature transform algorithm,SIFT)的口腔黏膜病损分割模型(PixelSIFT-UNet),该方法通过计算每个图像像素的局部特征描述符,自动提取病损相关特征,匹配真实尺度,实现对多种口腔黏膜疾病病损区域的像素级精确分割,提高病损分割的准确性,以期为临床医师提供更客观、更可靠的辅助诊断依据,提升诊断精确度和效率。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Warnakulasuriya S . Oral potentially malignant disorders: a comprehensive review on clinical aspects and management[J]. Oral Oncol, 2020,102:104550. DOI: 10.1016/j.oraloncology.2019.104550 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
程俊鑫,白贺天,常治楠,. 口腔黏膜癌前病变和口腔癌动物模型的研究进展[J]. 华西口腔医学杂志, 2020,38(2):198-204. DOI: 10.7518/hxkq.2020.02.015 .
返回引文位置Google Scholar
百度学术
万方数据
Cheng JX , Bai HT , Chang ZN ,et al. Development of precancerous lesions of oral mucous membrane diseases and oral cancer animal models[J]. West China J Stomatol, 2020,38(2):198-204. DOI: 10.7518/hxkq.2020.02.015 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[3]
Johnson DE , Burtness B , Leemans CR ,et al. Head and neck squamous cell carcinoma[J]. Nat Rev D is Primers , 2020,6(1):92. DOI: 10.1038/s41572-020-00224-3 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Siegel RL , Miller KD , Fuchs HE ,et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021,71(1):7-33. DOI: 10.3322/caac.21654 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Sung H , Ferlay J , Siegel RL ,et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3):209-249. DOI: 10.3322/caac.21660 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Lorini L , Bescós Atín C , Thavaraj S ,et al. Overview of Oral Potentially Malignant Disorders: From Risk Factors to Specific Therapies[J]. Cancers (Basel), 2021,13(15):3696. DOI: 10.3390/cancers13153696 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Rich AM , Hussaini HM , Nizar M ,et al. Diagnosis of oral potentially malignant disorders: overview and experience in oceania[J]. Front Oral Health, 2023,4:1122497. DOI: 10.3389/froh.2023.1122497 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Slosiarová N , Mesarčík M , Jurkáček P ,et al. Trustworthy AI in dental care beyond artificial intelligence act[J/OL]. 2023[2024-12-10]. https://scholar.google.com/scholar?hl=zh-CN & as_sdt=0%2C48 & q=Slosiarová+N%2C+Mesarčík+M%2C+Jurkáček+P%2C+et+al.+Trustworthy+AI+in+dental+care+beyond+Artificial+Intelligence+Act & btnG= . [ published online ahead of print].
返回引文位置Google Scholar
百度学术
万方数据
[9]
Ramseier CA . Diagnostic measures for monitoring and follow-up in periodontology and implant dentistry[J]. Periodontol 2000, 2024,95(1):129-155. DOI: 10.1111/prd.12588 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Keser G , Bayrakdar İŞ , Pekiner FN ,et al. A deep learning algorithm for classification of oral lichen planus lesions from photographic images: a retrospective study[J]. J Stomatol Oral Maxillofac Surg, 2023,124(1):101264. DOI: 10.1016/j.jormas.2022.08.007 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Lin H , Chen H , Weng L ,et al. Automatic detection of oral cancer in smartphone-based images using deep learning for early diagnosis[J]. J Biomed Opt, 2021,26(8):086007. DOI: 10.1117/1.JBO.26.8.086007 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Welikala R A , Remagnino P , Lim J H ,et al. Automated detection and classification of oral lesions using deep learning for early detection of oral cancer[J]. Ieee Access, 2020,8:132677-132693. DOI: 10.1109/ACCESS.2020.3010180 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Warin K , Limprasert W , Suebnukarn S ,et al. Automatic classification and detection of oral cancer in photographic images using deep learning algorithms[J]. J Oral Pathol Med, 2021,50(9):911-918. DOI: 10.1111/jop.13227 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Achararit P , Manaspon C , Jongwannasiri C ,et al. Artificial intelligence-based diagnosis of oral lichen planus using deep convolutional neural networks[J]. Eur J Dent, 2023,17(4):1275-1282. DOI: 10.1055/s-0042-1760300 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
SM P S , Shariff M , Subramanyam D P ,et al. Real time oral cavity detection leading to oral cancer using CNN[C]//2023 International conference on network, multimedia and information technology (NMITCON). IEEE, 2023:1-7. DOI: 10.1109/NMITCON58196.2023.10275851 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Zhang R , Lu M , Zhang J ,et al. Research and application of deep learning models with multi-scale feature fusion for lesion segmentation in oral mucosal diseases[J]. Bioengineering (Basel), 2024,11(11):1107. DOI: 10.3390/bioengineering11111107 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Ye YJ , Han Y , Liu Y ,et al. Utilizing deep learning for automated detection of oral lesions: a multicenter study[J]. Oral Oncol, 2024,155:106873. DOI: 10.1016/j.oraloncology.2024.106873 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Ferrer-Sánchez A , Bagan J , Vila-Francés J ,et al. Prediction of the risk of cancer and the grade of dysplasia in leukoplakia lesions using deep learning[J]. Oral Oncol, 2022,132:105967. DOI: 10.1016/j.oraloncology.2022.105967 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Warin K , Limprasert W , Suebnukarn S ,et al. Automatic classification and detection of oral cancer in photographic images using deep learning algorithms[J]. J Oral Pathol Med, 2021,50(9):911-918. DOI: 10.1111/jop.13227 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Fu Q , Chen Y , Li Z ,et al. A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: a retrospective study[J]. EClinicalMedicine, 2020,27:100558. DOI: 10.1016/j.eclinm.2020.100558 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Balki I , Amirabadi A , Levman J ,et al. Sample-size determination methodologies for machine learning in medical imaging researc h: a systematic review [J]. Can Assoc Radiol J, 2019,70(4):344-353. DOI: 10.1016/j.carj.2019.06.002 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Gulamali FF , Sawant AS , Kovatch P ,et al. Autoencoders for sample size estimation for fully connected neural network classifiers[J]. NPJ Digit Med, 2022,5(1):180. DOI: 10.1038/s41746-022-00728-0 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Goldenholz DM , Sun H , Ganglberger W ,et al. Sample size analysis for machine learning clinical validation studies[J]. Biomedicines, 2023,11(3):685. DOI: 10.3390/biomedicines11030685 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Ronneberger O , Fischer P , Brox T . U-Net: convolutional networks for biomedical image segmentation[C/OL]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer International Publishing, 2015. DOI: 10.1007/978-3-319-24574-4_28 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Lowe D G . Object recognition from local scale-invariant features[C]//Proceedings of the seventh IEEE international conference on computer vision. Ieee, 1999,2:1150-1157. DOI: 10.1109/ICCV.1999.790410 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Garcia-Garcia A , Orts-Escolano S , Oprea S ,et al. A review on deep learning techniques applied to semantic segmentation[J]. arXiv preprint:arXiv. 1704.06857,2017DOI: 10.48550/arXiv.1704.06857 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Tanriver G , Soluk Tekkesin M , Ergen O . Automated detection and classification of oral lesions using deep learning to detect oral potentially malignant disorders[J]. Cancers (Basel), 2021,13(11):2766. DOI: 10.3390/cancers13112766 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
穆昱. 基于弱监督学习的口腔白斑分割[D]. 西安:西北大学, 2020.
返回引文位置Google Scholar
百度学术
万方数据
Mu Y . Segmentation of oral leukoplakia based on weakly supervised learning[D]. Xi′an:Northwestern University, 2020.
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[29]
Camalan S , Mahmood H , Binol H ,et al. Convolutional neural network-based clinical predictors of oral dysplasia: class activation map analysis of deep learning results[J]. Cancers (Basel), 2021,13(6):1291. DOI: 10.3390/cancers13061291 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Jubair F , Al-Karadsheh O , Malamos D ,et al. A novel lightweight deep convolutional neural network for early detection of oral cancer[J]. Oral Dis, 2022,28(4):1123-1130. DOI: 10.1111/odi.13825 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
管子玉,谢飞,任文研,. 基于多任务学习的口腔白斑与扁平苔藓的分割与识别[J]. 西北大学学报(自然科学版), 2020,50(1):1-8. DOI: 10.16152/j.cnki.xdxbzr.2020-01-001 .
返回引文位置Google Scholar
百度学术
万方数据
Guan ZY , Xie F , Ren WY ,et al. The segmentation and recognition of oral leukoplakia and lichen planus based on multi-task learning[J]. J Northwest Univ (Nat Sci Ed), 2020,50(1):1-8. DOI: 10.16152/j.cnki.xdxbzr.2020-01-001 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[32]
He K , Gkioxari G , Dollar P ,et al. Mask R-CNN[J]. IEEE Trans Pattern Anal Mach Intell, 2020,42(2):386-397. DOI: 10.1109/TPAMI.2018.2844175 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
朱赴东,Email: nc.defudabe.ujzdfz,电话:0571-85269609
B

张睿:酝酿和设计实验、实施研究、采集数据、分析及解释数据、起草文章、统计分析、获取研究经费、行政、技术或材料支持;金路:酝酿和设计实验、实施研究、分析及解释数据、起草文章、统计分析;陈谦明:对文章的知识性内容作批评性审阅、指导、支持性贡献;丁婷婷:采集数据、分析及解释数据、对文章的知识性内容作批评性审阅、获取研究经费、指导;张琦玥:采集数据、分析及解释数据、对文章的知识性内容作批评性审阅、指导;陈耀武:对文章的知识性内容作批评性审阅、指导、支持性贡献;田翔:对文章的知识性内容作批评性审阅、指导、支持性贡献;曹雨齐:对文章的知识性内容作批评性审阅、获取研究经费、指导;陈小燕:对文章的知识性内容作批评性审阅、指导、支持性贡献;朱赴东:实施研究、对文章的知识性内容作批评性审阅、获取研究经费、指导、支持性贡献

C
张睿, 金路, 陈谦明, 等. 尺度不变特征增强深度学习在口腔黏膜病损分割中应用的研究[J]. 中华口腔医学杂志, 2025, 60(3): 239-247. DOI: 10.3760/cma.j.cn112144-20241210-00467.
D
所有作者声明不存在利益冲突
E
国家自然科学基金 (82471034,82301070)
浙江大学温州研究院科技专项 (XMGL-KJZX-202401)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号