综述
ENGLISH ABSTRACT
上皮周微环境改变在口腔潜在恶性疾患恶变中的作用
陈滢
楼超
作者及单位信息
·
DOI: 10.3760/cma.j.cn112144-20241214-00481
Role of periepithelial microenvironment changes in the malignant transformation of oral potential malignant disorders
Chen Ying
Lou Chao
Authors Info & Affiliations
Chen Ying
Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine & College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
Lou Chao
Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine & College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
·
DOI: 10.3760/cma.j.cn112144-20241214-00481
294
55
0
0
2
2
PDF下载
APP内阅读
摘要

口腔潜在恶性疾患(OPMDs)是一类具有癌变风险的口腔黏膜病变,其黏膜上皮所处的微环境与OPMDs恶变密切相关。然而上皮周微环境在OPMDs恶变的过程中的改变与起到的作用目前未完全明确,本文在免疫微环境、基质微环境、代谢微环境与口腔微生物几个方面介绍了上皮周微环境改变在OPMDs恶变中的作用。在免疫微环境中,上皮周免疫细胞的免疫监视能力减弱,部分细胞与恶变细胞发生相互作用,形成免疫抑制微环境;基质中的细胞通过分泌细胞因子、营养支持等方式,结合细胞外基质降解、局部血管形成共同促进OPMDs恶变;上皮细胞在恶变的过程中发生代谢重编程,同时形成的缺氧微环境能够进一步促进上皮细胞的恶性转化;口腔微生物通过诱导炎症反应、形成低氧环境等促进OPMDs恶变。

口腔黏膜;细胞微环境;口腔黏膜潜在恶性病变;口腔癌;癌症免疫
ABSTRACT

Oral potential malignant disorders (OPMDs) are a group of oral mucosal lesions with a risk of cancer transformation. The microenvironment surrounding the epithelial tissue is closely related to the malignant transformation of OPMDs. However, the changes and role of the periepithelial microenvironment during the malignant progression of OPMDs are not yet fully understood. This review discuss the impact of changes in the periepithelial microenvironment on the malignant transformation of OPMDs from following aspects: the immune microenvironment, stromal microenvironment, metabolic microenvironment, and oral microorganism. In the immune microenvironment, the immune surveillance capacity of periepithelial immune cells weakens, and some of these cells interact with malignant cells, resulting in an immunosuppressive microenvironment. Cells in the matrix promote the malignant transformation of OPMDs through the secretion of cytokines and nutritional support, along with extracellular matrix degradation and local angiogenesis. Epithelial cells undergo metabolic reprogramming during malignant transformation, while the resulting hypoxic microenvironment can further promote the malignant transition of epithelial cells. Oral microorganism fosters the malignant transformation of OPMDs by inducing inflammatory responses and creating hypoxic conditions.

Mouth mucosa;Cellular microenvironment;Oral potential malignant disorders;Oral cancer;Cancer immunology
Lou Chao, Email: nc.defudabe.utjs.inmulaoahcuol, Tel: 0086-21-23271699
引用本文

陈滢,楼超. 上皮周微环境改变在口腔潜在恶性疾患恶变中的作用[J]. 中华口腔医学杂志,2025,60(03):287-295.

DOI:10.3760/cma.j.cn112144-20241214-00481

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
口腔上皮周微环境是指口腔黏膜上皮细胞及其周围成分所构成的复杂环境,除上皮细胞外,其中还包含免疫细胞、基质细胞、基质、信号分子以及微生物等,这些成分相互作用,形成复杂的功能网络,对上皮细胞的生长产生重要影响。口腔潜在恶性疾患(oral potential malignant disorders,OPMDs)是指口腔黏膜发生的一类病变,其尚未发展为口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC),但存在恶变风险,主要包括口腔白斑、红斑、扁平苔藓、口腔黏膜下纤维化(oral submucous fibrosis,OSF)和光化性角化病等病变 1
在口腔黏膜从健康上皮发展成OPMDs继而恶变为OSCC的过程中,上皮周微环境的改变起了重要作用,例如局部形成的慢性炎症、免疫抑制微环境、基质细胞的改变、血管的形成、上皮细胞的代谢重编程、低氧以及微生物的作用等。目前针对OSCC的肿瘤微环境有较多研究,然而在OPMDs恶性转化的过程中,对于上皮周微环境中的各成分改变发挥的具体作用,国内尚缺乏系统的归纳和总结。本文总结了上皮周微环境各主要组成部分的变化在OPMDs恶性转化过程中的作用,为进一步研究如何预防OPMDs恶变以及寻找新的治疗靶点提供思路。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Warnakulasuriya S , Johnson NW , van der Waal I . Nomenclature and classification of potentially malignant disorders of the oral mucosa[J]. J Oral Pathol Med, 2007,36(10):575-580. DOI: 10.1111/j.1600-0714.2007.00582.x .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Farlow JL , Brenner JC , Lei YL ,et al. Immune deserts in head and neck squamous cell carcinoma: a review of challenges and opportunities for modulating the tumor immune microenvironment[J]. Oral Oncol, 2021,120:105420. DOI: 10.1016/j.oraloncology.2021.105420 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Zhang QF , Yin WW , Xia Y ,et al. Liver-infiltrating CD11b(-)CD27(-) NK subsets account for NK-cell dysfunction in patients with hepatocellular carcinoma and are associated with tumor progression[J]. Cell Mol Immunol, 2017,14(10):819-829. DOI: 10.1038/cmi.2016.28 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Surendran S , Aboelkheir U , Tu AA ,et al. T-cell infiltration and immune checkpoint expression increase in oral cavity premalignant and malignant disorders[J]. Biomedicines, 2022,10(8):1840. DOI: 10.3390/biomedicines10081840 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
杨连杰,郑凯月,刘英. T淋巴细胞在口腔扁平苔藓发生发展中的作用研究进展[J]. 山东医药, 2022,62(30):90-93. DOI: 10.3969/j.issn.1002-266X.2022.30.024 .
返回引文位置Google Scholar
百度学术
万方数据
Yang LJ , Zheng KY , Liu Y . Research progress on the role of T lymphocytes in the development of oral lichen planus[J]. Shandong Med J, 2022,62(30):90-93. DOI: 10.3969/j.issn.1002-266X.2022.30.024
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[6]
Zhou XJ , Sugerman PB , Savage NW ,et al. Intra-epithelial CD8+T cells and basement membrane disruption in oral lichen planus[J]. J Oral Pathol Med, 2002,31(1):23-27. DOI: 10.1046/j.0904-2512.2001.10063.x .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Xie W , Shen J , Wang D ,et al. Dynamic changes of exhaustion features in T cells during oral carcinogenesis[J]. Cell Prolif, 2022,55(4):e13207. DOI: 10.1111/cpr.13207 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Mills CD , Ley K . M1 and M2 macrophages: the chicken and the egg of immunity[J]. J Innate Immun, 2014,6(6):716-726. DOI: 10.1159/000364945 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Mori K , Haraguchi S , Hiori M ,et al. Tumor-associated macrophages in oral premalignant lesions coexpress CD163 and STAT1 in a Th1-dominated microenvironment[J]. BMC Cancer, 2015,15:573. DOI: 10.1186/s12885-015-1587-0 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Kouketsu A , Sato I , Oikawa M ,et al. Regulatory T cells and M2-polarized tumour-associated macrophages are associated with the oncogenesis and progression of oral squamous cell carcinoma[J]. Int J Oral Maxillofac Surg, 2019,48(10):1279-1288. DOI: 10.1016/j.ijom.2019.04.004 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Shigeoka M , Koma YI , Nishio M ,et al. CD163(+) macrophages infiltration correlates with the immunosuppressive cytokine interleukin 10 expression in tongue leukoplakia[J]. Clin Exp Dent Res, 2019,5(6):627-637. DOI: 10.1002/cre2.228 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Mori K , Hiroi M , Shimada J ,et al. Infiltration of m2 tumor-associated macrophages in oral squamous cell carcinoma correlates with tumor malignancy[J]. Cancers (Basel), 2011,3(4):3726-3739. DOI: 10.3390/cancers3043726 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Goswami KK , Ghosh T , Ghosh S ,et al. Tumor promoting role of anti-tumor macrophages in tumor microenvironment[J]. Cell Immunol, 2017,316:1-10. DOI: 10.1016/j.cellimm.2017.04.005 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Chen P , Zuo H , Xiong H ,et al. Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis[J]. Proc Natl Acad Sci U S A, 2017,114(3):580-585. DOI: 10.1073/pnas.1614035114 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Lin EY , Li JF , Gnatovskiy L ,et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer[J]. Cancer Res, 2006,66(23):11238-11246. DOI: 10.1158/0008-5472.CAN-06-1278 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Guillerey C , Huntington ND , Smyth MJ . Targeting natural killer cells in cancer immunotherapy[J]. Nat Immunol, 2016,17(9):1025-1036. DOI: 10.1038/ni.3518 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Thornhill MH , Sankar V , Xu XJ ,et al. The role of histopathological characteristics in distinguishing amalgam-associated oral lichenoid reactions and oral lichen planus[J]. J Oral Pathol Med, 2006,35(4):233-240. DOI: 10.1111/j.1600-0714.2006.00406.x .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Rosales C , Lowell CA , Schnoor M ,et al. Neutrophils: Their Role in Innate and Adaptive Immunity 2017[J]. J Immunol Res, 2017,2017:9748345. DOI: 10.1155/2017/9748345 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Moonen C , Hirschfeld J , Cheng L ,et al. Oral neutrophils characterized: chemotactic, phagocytic, and neutrophil extracellular trap (NET) formation properties[J]. Front Immunol, 2019,10:635. DOI: 10.3389/fimmu.2019.00635 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Jablonska E , Garley M , Surazynski A ,et al. Neutrophil extracellular traps (NETs) formation induced by TGF-β in oral lichen planus: possible implications for the development of oral cancer[J]. Immunobiology, 2020,225(2):151901. DOI: 10.1016/j.imbio.2019.151901 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Li B , Liu Y , Hu T ,et al. Neutrophil extracellular traps enhance procoagulant activity in patients with oral squamous cell carcinoma[J]. J Cancer Res Clin Oncol, 2019,145(7):1695-1707. DOI: 10.1007/s00432-019-02922-2 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Silva LC , Fonseca FP , Almeida OP ,et al. CD1a+and CD207+cells are reduced in oral submucous fibrosis and oral squamous cell carcinoma[J]. Med Oral Patol Oral Cir Bucal, 2020,25(1):e49-e55. DOI: 10.4317/medoral.23177 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Kumar TA , Veeravarmal V , Nirmal RM ,et al. Expression of cluster of differentiation 1a-positive langerhans cells in oral lichen planus[J]. Indian J Dermatol, 2019,64(1):41-46. DOI: 10.4103/ijd.IJD_350_16 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Simark Mattsson C , Jontell M , Bergenholtz G ,et al. Distribution of interferon-gamma mRNA-positive cells in oral lichen planus lesions[J]. J Oral Pathol Med, 1998,27(10):483-488. DOI: 10.1111/j.1600-0714.1998.tb01917.x .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Hanahan D , Weinberg RA . Hallmarks of cancer: the next generation[J]. Cell, 2011,144(5):646-674. DOI: 10.1016/j.cell.2011.02.013 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
王紫莹,陈晓涛. 辅助性T细胞17与白细胞介素17在口腔黏膜疾病中的研究进展[J]. 口腔疾病防治, 2021,29(3):194-197. DOI: 10.12016/j.issn.2096-1456.2021.03.009 .
返回引文位置Google Scholar
百度学术
万方数据
Wang ZY , Chen XT . Research progress on the role of T helper cells 17 and interleukin 17 in oral mucosal diseases[J]. J Dent Prev & Treat , 2021,29(3):194-197. DOI: 10.12016/j.issn.2096-1456.2021.03.009 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[27]
Tao XA , Xia J , Chen XB ,et al. FOXP3 T regulatory cells in lesions of oral lichen planus correlated with disease activity[J]. Oral Dis, 2010,16(1):76-82. DOI: 10.1111/j.1601-0825.2009.01608.x .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Kohli K , Pillarisetty VG , Kim TS . Key chemokines direct migration of immune cells in solid tumors[J]. Cancer Gene Ther, 2022,29(1):10-21. DOI: 10.1038/s41417-021-00303-x .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Liu S , Liu Z , Shan Z ,et al. Skewed Th17/Treg balance during progression and malignant transformation of oral submucous fibrosis[J]. Oral Dis, 2022,28(8):2119-2130. DOI: 10.1111/odi.13853 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Kujan O , Agag M , Smaga M ,et al. PD-1/PD-L1, Treg-related proteins, and tumour-infiltrating lymphocytes are associated with the development of oral squamous cell carcinoma[J]. Pathology, 2022,54(4):409-416. DOI: 10.1016/j.pathol.2021.09.013 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Sun Y , Liu N , Guan X ,et al. Immunosuppression induced by chronic inflammation and the progression to oral squamous cell carcinoma[J]. Mediators Inflamm, 2016,2016:5715719. DOI: 10.1155/2016/5715719 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Gabrilovich DI , Bronte V , Chen SH ,et al. The terminology issue for myeloid-derived suppressor cells[J]. Cancer Res, 2007,67(1):425;author reply 426. DOI: 10.1158/0008-5472.CAN-06-3037 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Veglia F , Perego M , Gabrilovich D . Myeloid-derived suppressor cells coming of age[J]. Nat Immunol, 2018,19(2):108-119. DOI: 10.1038/s41590-017-0022-x .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Talmadge JE , Gabrilovich DI . History of myeloid-derived suppressor cells[J]. Nat Rev Cancer, 2013,13(10):739-752. DOI: 10.1038/nrc3581 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Zhou J , Nefedova Y , Lei A ,et al. Neutrophils and PMN-MDSC: Their biological role and interaction with stromal cells[J]. Semin Immunol, 2018,35:19-28. DOI: 10.1016/j.smim.2017.12.004 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Bunt SK , Yang L , Sinha P ,et al. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression[J]. Cancer Res, 2007,67(20):10019-10026. DOI: 10.1158/0008-5472.CAN-07-2354 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Kouketsu A , Haruka S , Kuroda K ,et al. Myeloid-derived suppressor cells and plasmacytoid dendritic cells are associated with oncogenesis of oral squamous cell carcinoma[J]. J Oral Pathol Med, 2023,52(1):9-19. DOI: 10.1111/jop.13386 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Suganya G , Bavle RM , Paremala K ,et al. Survivin expression in oral lichen planus: Role in malignant transformation[J]. J Oral Maxillofac Pathol, 2016,20(2):234-238. DOI: 10.4103/0973-029X.185912 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Bombeccari GP , Guzzi G , Tettamanti M ,et al. Oral lichen planus and malignant transformation: a longitudinal cohort study[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011,112(3):328-334. DOI: 10.1016/j.tripleo.2011.04.009 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
González-Moles MA , Bascones-Ilundain C , Gil Montoya JA ,et al. Cell cycle regulating mechanisms in oral lichen planus: molecular bases in epithelium predisposed to malignant transformation[J]. Arch Oral Biol, 2006,51(12):1093-1103. DOI: 10.1016/j.archoralbio.2006.06.007 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Bascones C , Gonzalez-Moles MA , Esparza G ,et al. Apoptosis and cell cycle arrest in oral lichen planus Hypothesis on their possible influence on its malignant transformation[J]. Arch Oral Biol, 2005,50(10):873-881. DOI: 10.1016/j.archoralbio.2005.02.005 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Valente G , Pagano M , Carrozzo M ,et al. Sequential immunohistochemical p53 expression in biopsies of oral lichen planus undergoing malignant evolution[J]. J Oral Pathol Med, 2001,30(3):135-140. DOI: 10.1034/j.1600-0714.2001.300302.x .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Tomasek JJ , Gabbiani G , Hinz B ,et al. Myofibroblasts and mechano-regulation of connective tissue remodelling[J]. Nat Rev Mol Cell Biol, 2002,3(5):349-363. DOI: 10.1038/nrm809 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Wu F , Yang J , Liu J ,et al. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer[J]. Signal Transduct Target Ther, 2021,6(1):218. DOI: 10.1038/s41392-021-00641-0 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Davidson S , Coles M , Thomas T ,et al. Fibroblasts as immune regulators in infection, inflammation and cancer[J]. Nat Rev Immunol, 2021,21(11):704-717. DOI: 10.1038/s41577-021-00540-z .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Zhang Y , Liu K , Cheng J ,et al. FAP-α(+) immunofibroblasts in oral lichen planus promote CD4(+) T-cell infiltration via CCL5 secretion[J]. Exp Dermatol, 2022,31(9):1421-1430. DOI: 10.1111/exd.14613 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Xu XH , Liu Y , Feng L ,et al. Interleukin-6 released by oral lichen planus myofibroblasts promotes angiogenesis[J]. Exp Ther Med, 2021,21(4):291. DOI: 10.3892/etm.2021.9722 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Kojima Y , Acar A , Eaton EN ,et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts[J]. Proc Natl Acad Sci U S A, 2010,107(46):20009-20014. DOI: 10.1073/pnas.1013805107 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Erez N , Truitt M , Olson P ,et al. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner[J]. Cancer Cell, 2010,17(2):135-147. DOI: 10.1016/j.ccr.2009.12.041 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Sanz-Moreno V , Gaggioli C , Yeo M ,et al. ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma[J]. Cancer Cell, 2011,20(2):229-245. DOI: 10.1016/j.ccr.2011.06.018 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Ferrari N , Ranftl R , Chicherova I ,et al. Dickkopf-3 links HSF1 and YAP/TAZ signalling to control aggressive behaviours in cancer-associated fibroblasts[J]. Nat Commun, 2019,10(1):130. DOI: 10.1038/s41467-018-07987-0 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Lim KP , Cirillo N , Hassona Y ,et al. Fibroblast gene expression profile reflects the stage of tumour progression in oral squamous cell carcinoma[J]. J Pathol, 2011,223(4):459-469. DOI: 10.1002/path.2841 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Gupta K , Metgud R , Gupta J . Evaluation of stromal myofibroblasts in oral leukoplakia, oral submucous fibrosis, and oral squamous cell carcinoma: an immunohistochemical study[J]. J Cancer Res Ther, 2015,11(4):893-898. DOI: 10.4103/0973-1482.147700 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Sarode SC , Panta P , Sarode GS ,et al. New research directions for areca nut/betel quid and oral submucous fibrosis for holistic prevention and treatment[J]. Oral Oncol, 2018,78:218-219. DOI: 10.1016/j.oraloncology.2018.02.006 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Manabe Y , Toda S , Miyazaki K ,et al. Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer-stromal cell interactions[J]. J Pathol, 2003,201(2):221-228. DOI: 10.1002/path.1430 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
Zhang Y , Daquinag A , Traktuev DO ,et al. White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models[J]. Cancer Res, 2009,69(12):5259-5266. DOI: 10.1158/0008-5472.CAN-08-3444 .
返回引文位置Google Scholar
百度学术
万方数据
[57]
Fang LY , Wong TY , Chiang WF ,et al. Fatty-acid-binding protein 5 promotes cell proliferation and invasion in oral squamous cell carcinoma[J]. J Oral Pathol Med, 2010,39(4):342-348. DOI: 10.1111/j.1600-0714.2009.00836.x .
返回引文位置Google Scholar
百度学术
万方数据
[58]
Frantz C , Stewart KM , Weaver VM . The extracellular matrix at a glance[J]. J Cell Sci, 2010,123:Pt 24-4195. 4200DOI: 10.1242/jcs.023820 .
返回引文位置Google Scholar
百度学术
万方数据
[59]
Walker C , Mojares E , Del Río Hernández A . Role of extracellular matrix in development and cancer progression[J]. Int J Mol Sci, 2018,19(10):3028. DOI: 10.3390/ijms19103028 .
返回引文位置Google Scholar
百度学术
万方数据
[60]
Quintero-Fabián S , Arreola R , Becerril-Villanueva E ,et al. Role of matrix metalloproteinases in angiogenesis and cancer[J]. Front Oncol, 2019,9:1370. DOI: 10.3389/fonc.2019.01370 .
返回引文位置Google Scholar
百度学术
万方数据
[61]
Henke E , Nandigama R , Ergün S . Extracellular matrix in the tumor microenvironment and its impact on cancer therapy[J]. Front Mol Biosci, 2019,6:160. DOI: 10.3389/fmolb.2019.00160 .
返回引文位置Google Scholar
百度学术
万方数据
[62]
Hsu HW , Wall NR , Hsueh CT ,et al. Combination antiangiogenic therapy and radiation in head and neck cancers[J]. Oral Oncol, 2014,50(1):19-26. DOI: 10.1016/j.oraloncology.2013.10.003 .
返回引文位置Google Scholar
百度学术
万方数据
[63]
Hasina R , Lingen MW . Angiogenesis in oral cancer[J]. J Dent Educ, 2001,65(11):1282-1290.
返回引文位置Google Scholar
百度学术
万方数据
[64]
Carmeliet P , Jain RK . Angiogenesis in cancer and other diseases[J]. Nature, 2000,407(6801):249-257. DOI: 10.1038/35025220 .
返回引文位置Google Scholar
百度学术
万方数据
[65]
Maxwell PH , Wiesener MS , Chang GW ,et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis[J]. Nature, 1999,399(6733):271-275. DOI: 10.1038/20459 .
返回引文位置Google Scholar
百度学术
万方数据
[66]
Sarkis SA , Abdullah BH , Abdul Majeed BA ,et al. Immunohistochemical expression of epidermal growth factor receptor (EGFR) in oral squamous cell carcinoma in relation to proliferation, apoptosis, angiogenesis and lymphangiogenesis[J]. Head Neck Oncol, 2010,2:13. DOI: 10.1186/1758-3284-2-13 .
返回引文位置Google Scholar
百度学术
万方数据
[67]
Hicklin DJ , Ellis LM . Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis[J]. J Clin Oncol, 2005,23(5):1011-1027. DOI: 10.1200/JCO.2005.06.081 .
返回引文位置Google Scholar
百度学术
万方数据
[68]
Akter R , Awais M , Boopathi V ,et al. Inversion of the warburg effect: unraveling the metabolic nexus between obesity and cancer[J]. ACS Pharmacol Transl Sci, 2024,7(3):560-569. DOI: 10.1021/acsptsci.3c00301 .
返回引文位置Google Scholar
百度学术
万方数据
[69]
Lunt SY , Vander Heiden MG . Aerobic glycolysis: meeting the metabolic requirements of cell proliferation[J]. Annu Rev Cell Dev Biol, 2011,27:441-464. DOI: 10.1146/annurev-cellbio-092910-154237 .
返回引文位置Google Scholar
百度学术
万方数据
[70]
Yoshimura N , Yamada SI , Aizawa H ,et al. Glycogen metabolism in an oral dysplastic/cancerous (iodine-negative) epithelium: glycogen was consumed in the pentose phosphate pathway, not in glycolysis[J]. J Oral Maxillofac Surgery, Med Pathol, 2019,31(4):288-294. DOI: https://doi.org/10.1016/j.ajoms.2019.01.002 .
返回引文位置Google Scholar
百度学术
万方数据
[71]
Ogawa T , Washio J , Takahashi T ,et al. Glucose and glutamine metabolism in oral squamous cell carcinoma: insight from a quantitative metabolomic approach[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2014,118(2):218-225. DOI: 10.1016/j.oooo.2014.04.003 .
返回引文位置Google Scholar
百度学术
万方数据
[72]
Hsu CW , Chen YT , Hsieh YJ ,et al. Integrated analyses utilizing metabolomics and transcriptomics reveal perturbation of the polyamine pathway in oral cavity squamous cell carcinoma[J]. Anal Chim Acta, 2019,1050:113-122. DOI: 10.1016/j.aca.2018.10.070 .
返回引文位置Google Scholar
百度学术
万方数据
[73]
Paul A , Srivastava S , Roy R ,et al. Malignancy prediction among tissues from Oral SCC patients including neck invasions: a (1)H HRMAS NMR based metabolomic study[J]. Metabolomics, 2020,16(3):38. DOI: 10.1007/s11306-020-01660-8 .
返回引文位置Google Scholar
百度学术
万方数据
[74]
Srivastava S , Roy R , Gupta V ,et al. Proton HR-MAS MR spectroscopy of oral squamous cell carcinoma tissues: an ex vivo study to identify malignancy induced metabolic fingerprints[J]. Metabolomics, 2011,7(2):278-288. DOI: 10.1007/s11306-010-0253-4 .
返回引文位置Google Scholar
百度学术
万方数据
[75]
Block KI , Gyllenhaal C , Lowe L ,et al. Designing a broad-spectrum integrative approach for cancer prevention and treatment[J]. Semin Cancer Biol, 2015,35:Suppl(Suppl)-S276. S304DOI: 10.1016/j.semcancer.2015.09.007 .
返回引文位置Google Scholar
百度学术
万方数据
[76]
Chen MK , Chiou HL , Su SC ,et al. The association between hypoxia inducible factor-1alpha gene polymorphisms and increased susceptibility to oral cancer[J]. Oral Oncol, 2009,45(12):e222-226. DOI: 10.1016/j.oraloncology.2009.07.015 .
返回引文位置Google Scholar
百度学术
万方数据
[77]
侯小峰,冯文珍. HIF-1α、VEGF在口腔癌组织中的表达水平及其临床意义[J]. 医学临床研究, 2022,39(7):965-968. DOI: 10.3969/j.issn.1671-7171.2022.07.002 .
返回引文位置Google Scholar
百度学术
万方数据
Hou XF , Feng WZ . Expression and clinical significance of HIF-1α and VEGF in oral cancer tissues[J]. J Clin Res, 2022,39(7):965-968. DOI: 10.3969/j.issn.1671-7171.2022.07.002 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[78]
Deng D , Xu C , Sun P ,et al. Crystal structure of the human glucose transporter GLUT1[J]. Nature, 2014,510(7503):121-125. DOI: 10.1038/nature13306 .
返回引文位置Google Scholar
百度学术
万方数据
[79]
徐经琦,王君,史同新,. 扁平苔癣HIF-1α、GLUT-1及MMP-2表达及意义[J]. 青岛大学学报(医学版), 2019,55(3):350-353, 357. DOI: 10.11712/jms201903023 .
返回引文位置Google Scholar
百度学术
万方数据
Xu JQ , Wang J , Shi TX ,et al. Expression and significance of hypoxia-inducible factor-1α, glucose transporter 1, and matrix metalloproteinase-2 in lichen planus[J]. Acta Aacademiae Med Qingdao Univ, 2019,55(3):350-353, 357. DOI: 10.11712/jms201903023 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[80]
Grimm M , Cetindis M , Lehmann M ,et al. Association of cancer metabolism-related proteins with oral carcinogenesis: indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma?[J]. J Transl Med, 2014,12:208. DOI: 10.1186/1479-5876-12-208 .
返回引文位置Google Scholar
百度学术
万方数据
[81]
Plummer PN , Freeman R , Taft RJ ,et al. MicroRNAs regulate tumor angiogenesis modulated by endothelial progenitor cells[J]. Cancer Res, 2013,73(1):341-352. DOI: 10.1158/0008-5472.CAN-12-0271 .
返回引文位置Google Scholar
百度学术
万方数据
[82]
He Y , Shao F , Pi W ,et al. Largescale transcriptomics analysis suggests over-expression of BGH3, MMP9 and PDIA3 in oral squamous cell carcinoma[J]. PLoS One, 2016,11(1):e0146530. DOI: 10.1371/journal.pone.0146530 .
返回引文位置Google Scholar
百度学术
万方数据
[83]
Börnigen D , Ren B , Pickard R ,et al. Alterations in oral bacterial communities are associated with risk factors for oral and oropharyngeal cancer[J]. Sci Rep, 2017,7(1):17686. DOI: 10.1038/s41598-017-17795-z .
返回引文位置Google Scholar
百度学术
万方数据
[84]
Sepich-Poore GD , Zitvogel L , Straussman R ,et al. The microbiome and human cancer[J]. Science, 2021,371(6536):eabc4552. DOI: 10.1126/science.abc4552 .
返回引文位置Google Scholar
百度学术
万方数据
[85]
Xie Y , Xie F , Zhou X ,et al. Microbiota in tumors: from understanding to application[J]. Adv Sci (Weinh), 2022,9(21):e2200470. DOI: 10.1002/advs.202200470 .
返回引文位置Google Scholar
百度学术
万方数据
[86]
Amer A , Galvin S , Healy CM ,et al. The microbiome of potentially malignant oral leukoplakia exhibits enrichment for fusobacterium, leptotrichia, campylobacter, and rothia species[J]. Front Microbiol, 2017,8:2391. DOI: 10.3389/fmicb.2017.02391 .
返回引文位置Google Scholar
百度学术
万方数据
[87]
童婷,程磊,任彪. 白色念珠菌与口腔潜在恶性病变相关研究进展[J]. 口腔疾病防治, 2020,28(12):806-810. DOI: 10.12016/j.issn.2096-1456.2020.12.010 .
返回引文位置Google Scholar
百度学术
万方数据
Tong T , Cheng L , Ren B . Research progress on the relationship between Candida albic ans and oral potentially malignant disorders [J]. J Dent Prev & Treat , 2020,28(12):806-810. DOI: 10.12016/j.issn.2096-1456.2020.12.010 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[88]
Moyes DL , Runglall M , Murciano C ,et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells[J]. Cell Host Microbe, 2010,8(3):225-235. DOI: 10.1016/j.chom.2010.08.002 .
返回引文位置Google Scholar
百度学术
万方数据
[89]
Di Cosola M , Cazzolla AP , Charitos IA ,et al. Candida albicans and oral carcinogenesis. A brief review[J]. J Fungi (Basel), 2021,7(6):476. DOI: 10.3390/jof7060476 .
返回引文位置Google Scholar
百度学术
万方数据
[90]
Alnuaimi AD , Ramdzan AN , Wiesenfeld D ,et al. Candida virulence and ethanol-derived acetaldehyde production in oral cancer and non-cancer subjects[J]. Oral Dis, 2016,22(8):805-814. DOI: 10.1111/odi.12565 .
返回引文位置Google Scholar
百度学术
万方数据
[91]
Mohd Bakri M , Mohd Hussaini H , Rachel Holmes A ,et al. Revisiting the association between candidal infection and carcinoma, particularly oral squamous cell carcinoma[J]. J Oral Microbiol, 2010,2DOI: 10.3402/jom.v2i0.5780 .
返回引文位置Google Scholar
百度学术
万方数据
[92]
Al-Hebshi NN , Nasher AT , Maryoud MY ,et al. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma[J]. Sci Rep, 2017,7(1):1834. DOI: 10.1038/s41598-017-02079-3 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
楼超,Email: nc.defudabe.utjs.inmulaoahcuol,电话:021-23271699
B

陈滢:数据收集、整理、起草文章;楼超:内容审阅、校对、修改

C
陈滢, 楼超. 上皮周微环境改变在口腔潜在恶性疾患恶变中的作用[J]. 中华口腔医学杂志, 2025, 60(3): 287-295. DOI: 10.3760/cma.j.cn112144-20241214-00481.
D
所有作者声明不存在利益冲突
E
国家自然科学基金 (82403025)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号